Suppr超能文献

基于张量的字典学习用于动态断层重建。

Tensor-based dictionary learning for dynamic tomographic reconstruction.

作者信息

Tan Shengqi, Zhang Yanbo, Wang Ge, Mou Xuanqin, Cao Guohua, Wu Zhifang, Yu Hengyong

机构信息

Beijing Key Laboratory of Nuclear Detection & Measurement Technology, Beijing 100084, People's Republic of China. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, People's Republic of China.

出版信息

Phys Med Biol. 2015 Apr 7;60(7):2803-18. doi: 10.1088/0031-9155/60/7/2803. Epub 2015 Mar 17.

Abstract

In dynamic computed tomography (CT) reconstruction, the data acquisition speed limits the spatio-temporal resolution. Recently, compressed sensing theory has been instrumental in improving CT reconstruction from far few-view projections. In this paper, we present an adaptive method to train a tensor-based spatio-temporal dictionary for sparse representation of an image sequence during the reconstruction process. The correlations among atoms and across phases are considered to capture the characteristics of an object. The reconstruction problem is solved by the alternating direction method of multipliers. To recover fine or sharp structures such as edges, the nonlocal total variation is incorporated into the algorithmic framework. Preclinical examples including a sheep lung perfusion study and a dynamic mouse cardiac imaging demonstrate that the proposed approach outperforms the vectorized dictionary-based CT reconstruction in the case of few-view reconstruction.

摘要

在动态计算机断层扫描(CT)重建中,数据采集速度限制了时空分辨率。最近,压缩感知理论有助于从极少视角投影中改进CT重建。在本文中,我们提出了一种自适应方法,用于训练基于张量的时空字典,以在重建过程中对图像序列进行稀疏表示。考虑原子之间和跨相位之间的相关性以捕获物体的特征。通过乘子交替方向法解决重建问题。为了恢复精细或锐利的结构(如边缘),将非局部总变分纳入算法框架。包括绵羊肺灌注研究和动态小鼠心脏成像在内的临床前实例表明,在少视角重建的情况下,所提出的方法优于基于矢量化字典的CT重建。

相似文献

1
Tensor-based dictionary learning for dynamic tomographic reconstruction.
Phys Med Biol. 2015 Apr 7;60(7):2803-18. doi: 10.1088/0031-9155/60/7/2803. Epub 2015 Mar 17.
2
Spectrotemporal CT data acquisition and reconstruction at low dose.
Med Phys. 2015 Nov;42(11):6317-36. doi: 10.1118/1.4931407.
4
A Model of Regularization Parameter Determination in Low-Dose X-Ray CT Reconstruction Based on Dictionary Learning.
Comput Math Methods Med. 2015;2015:831790. doi: 10.1155/2015/831790. Epub 2015 Oct 4.
5
Low-dose X-ray CT reconstruction via dictionary learning.
IEEE Trans Med Imaging. 2012 Sep;31(9):1682-97. doi: 10.1109/TMI.2012.2195669. Epub 2012 Apr 20.
6
Distributed CT image reconstruction algorithm based on the alternating direction method.
J Xray Sci Technol. 2015;23(1):83-99. doi: 10.3233/XST-140472.
7
NUFFT-Based Iterative Image Reconstruction via Alternating Direction Total Variation Minimization for Sparse-View CT.
Comput Math Methods Med. 2015;2015:691021. doi: 10.1155/2015/691021. Epub 2015 May 18.
8
Tomographic image reconstruction via estimation of sparse unidirectional gradients.
Comput Biol Med. 2017 Feb 1;81:93-105. doi: 10.1016/j.compbiomed.2016.12.015. Epub 2016 Dec 21.

引用本文的文献

1
Systematic Review on Learning-based Spectral CT.
IEEE Trans Radiat Plasma Med Sci. 2024 Feb;8(2):113-137. doi: 10.1109/trpms.2023.3314131. Epub 2023 Sep 12.
2
Systematic Review on Learning-based Spectral CT.
ArXiv. 2024 Sep 25:arXiv:2304.07588v9.
3
Image-spectral decomposition extended-learning assisted by sparsity for multi-energy computed tomography reconstruction.
Quant Imaging Med Surg. 2023 Feb 1;13(2):610-630. doi: 10.21037/qims-22-235. Epub 2022 Dec 8.
4
Tensor Gradient L₀-Norm Minimization-Based Low-Dose CT and Its Application to COVID-19.
IEEE Trans Instrum Meas. 2021 Jan 19;70:4503012. doi: 10.1109/TIM.2021.3050190. eCollection 2021.
5
Low-dose spectral CT reconstruction using image gradient -norm and tensor dictionary.
Appl Math Model. 2018 Nov;63:538-557. doi: 10.1016/j.apm.2018.07.006. Epub 2018 Jul 21.
6
Image Reconstruction: From Sparsity to Data-adaptive Methods and Machine Learning.
Proc IEEE Inst Electr Electron Eng. 2020 Jan;108(1):86-109. doi: 10.1109/JPROC.2019.2936204. Epub 2019 Sep 19.
7
Non-Local Low-Rank Cube-Based Tensor Factorization for Spectral CT Reconstruction.
IEEE Trans Med Imaging. 2019 Apr;38(4):1079-1093. doi: 10.1109/TMI.2018.2878226. Epub 2018 Oct 26.
8
9
Tensor-Based Dictionary Learning for Spectral CT Reconstruction.
IEEE Trans Med Imaging. 2017 Jan;36(1):142-154. doi: 10.1109/TMI.2016.2600249. Epub 2016 Aug 12.
10
Patch-based models and algorithms for image processing: a review of the basic principles and methods, and their application in computed tomography.
Int J Comput Assist Radiol Surg. 2016 Oct;11(10):1765-77. doi: 10.1007/s11548-016-1434-z. Epub 2016 Jun 10.

本文引用的文献

1
Cine cone beam CT reconstruction using low-rank matrix factorization: algorithm and a proof-of-principle study.
IEEE Trans Med Imaging. 2014 Aug;33(8):1581-91. doi: 10.1109/TMI.2014.2319055. Epub 2014 Apr 21.
2
Dictionary learning and time sparsity for dynamic MR data reconstruction.
IEEE Trans Med Imaging. 2014 Apr;33(4):979-94. doi: 10.1109/TMI.2014.2301271.
3
A tensor PRISM algorithm for multi-energy CT reconstruction and comparative studies.
J Xray Sci Technol. 2014;22(2):147-63. doi: 10.3233/XST-140416.
4
Compressed sensing dynamic cardiac cine MRI using learned spatiotemporal dictionary.
IEEE Trans Biomed Eng. 2014 Apr;61(4):1109-20. doi: 10.1109/TBME.2013.2294939.
5
Nonlocal hierarchical dictionary learning using wavelets for image denoising.
IEEE Trans Image Process. 2013 Dec;22(12):4689-98. doi: 10.1109/TIP.2013.2277813. Epub 2013 Aug 8.
7
4D cone beam CT via spatiotemporal tensor framelet.
Med Phys. 2012 Nov;39(11):6943-6. doi: 10.1118/1.4762288.
8
Computing sparse representations of multidimensional signals using Kronecker bases.
Neural Comput. 2013 Jan;25(1):186-220. doi: 10.1162/NECO_a_00385. Epub 2012 Sep 28.
9
Nonlocal regularization of inverse problems: a unified variational framework.
IEEE Trans Image Process. 2013 Aug;22(8):3192-203. doi: 10.1109/TIP.2012.2216278. Epub 2012 Sep 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验