Suppr超能文献

基于字典学习的低剂量X射线CT重建正则化参数确定模型

A Model of Regularization Parameter Determination in Low-Dose X-Ray CT Reconstruction Based on Dictionary Learning.

作者信息

Zhang Cheng, Zhang Tao, Zheng Jian, Li Ming, Lu Yanfei, You Jiali, Guan Yihui

机构信息

Medical Imaging Laboratory, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China ; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China ; University of Chinese Academy of Sciences, Beijing 100049, China.

Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.

出版信息

Comput Math Methods Med. 2015;2015:831790. doi: 10.1155/2015/831790. Epub 2015 Oct 4.

Abstract

In recent years, X-ray computed tomography (CT) is becoming widely used to reveal patient's anatomical information. However, the side effect of radiation, relating to genetic or cancerous diseases, has caused great public concern. The problem is how to minimize radiation dose significantly while maintaining image quality. As a practical application of compressed sensing theory, one category of methods takes total variation (TV) minimization as the sparse constraint, which makes it possible and effective to get a reconstruction image of high quality in the undersampling situation. On the other hand, a preliminary attempt of low-dose CT reconstruction based on dictionary learning seems to be another effective choice. But some critical parameters, such as the regularization parameter, cannot be determined by detecting datasets. In this paper, we propose a reweighted objective function that contributes to a numerical calculation model of the regularization parameter. A number of experiments demonstrate that this strategy performs well with better reconstruction images and saving of a large amount of time.

摘要

近年来,X射线计算机断层扫描(CT)被广泛用于揭示患者的解剖信息。然而,与遗传或癌症疾病相关的辐射副作用引起了公众的极大关注。问题在于如何在保持图像质量的同时显著降低辐射剂量。作为压缩感知理论的实际应用,一类方法将总变差(TV)最小化作为稀疏约束,这使得在欠采样情况下获得高质量的重建图像成为可能且有效。另一方面,基于字典学习的低剂量CT重建的初步尝试似乎是另一种有效选择。但一些关键参数,如正则化参数,无法通过检测数据集来确定。在本文中,我们提出了一种重新加权的目标函数,它有助于建立正则化参数的数值计算模型。大量实验表明,该策略表现良好,能得到更好的重建图像并节省大量时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd7a/4609404/481e6ddb22d0/CMMM2015-831790.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验