IEEE Trans Med Imaging. 2019 Apr;38(4):1079-1093. doi: 10.1109/TMI.2018.2878226. Epub 2018 Oct 26.
Spectral computed tomography (CT) reconstructs material-dependent attenuation images from the projections of multiple narrow energy windows, which is meaningful for material identification and decomposition. Unfortunately, the multi-energy projection datasets usually have lower signal-noise ratios (SNR). Very recently, a spatial-spectral cube matching frame (SSCMF) was proposed to explore the non-local spatial-spectral similarities for spectral CT. This method constructs a group by clustering up a series of non-local spatial-spectral cubes. The small size of spatial patches for such a group makes the SSCMF fail to fully encode the sparsity and low-rank properties. The hard-thresholding and collaboration filtering in the SSCMF also cause difficulty in recovering the image features and spatial edges. While all the steps are operated on 4-D group, the huge computational cost and memory load might not be affordable in practice. To avoid the above limitations and further improve the image quality, we first formulate a non-local cube-based tensor instead of group to encode the sparsity and low-rank properties. Then, as a new regularizer, the Kronecker-basis-representation tensor factorization is employed into a basic spectral CT reconstruction model to enhance the capability of image feature extraction and spatial edge preservation, generating a non-local low-rank cube-based tensor factorization (NLCTF) method. Finally, the split-Bregman method is adopted to solve the NLCTF model. Both numerical simulations and preclinical mouse studies are performed to validate and evaluate the NLCTF algorithm. The results show that the NLCTF method outperforms the other state-of-the-art competing algorithms.
光谱 CT 从多个窄能窗的投影重建物质相关衰减图像,这对于物质识别和分解具有重要意义。不幸的是,多能投影数据集通常具有较低的信噪比 (SNR)。最近,提出了一种空间-光谱立方体匹配框架 (SSCMF) 来探索光谱 CT 的非局部空间-光谱相似性。该方法通过对一系列非局部空间-光谱立方体进行聚类来构建一个组。由于这种组的空间补丁尺寸较小,SSCMF 无法充分编码稀疏性和低秩特性。SSCMF 中的硬阈值处理和协作滤波也导致图像特征和空间边缘的恢复困难。虽然所有步骤都是在 4-D 组上进行的,但在实践中,巨大的计算成本和内存负载可能是无法承受的。为了避免上述限制并进一步提高图像质量,我们首先将基于非局部立方体的张量形式化,而不是组,以编码稀疏性和低秩特性。然后,作为一种新的正则化器,Kronecker 基表示张量分解被应用到基本的光谱 CT 重建模型中,以增强图像特征提取和空间边缘保持的能力,生成非局部低秩立方体张量分解 (NLCTF) 方法。最后,采用分裂布格曼方法来求解 NLCTF 模型。进行了数值模拟和临床前小鼠研究来验证和评估 NLCTF 算法。结果表明,NLCTF 方法优于其他最先进的竞争算法。