Suppr超能文献

图像重建:从稀疏性到数据自适应方法与机器学习

Image Reconstruction: From Sparsity to Data-adaptive Methods and Machine Learning.

作者信息

Ravishankar Saiprasad, Ye Jong Chul, Fessler Jeffrey A

机构信息

Departments of Computational Mathematics, Science and Engineering, and Biomedical Engineering at Michigan State University, East Lansing, MI, 48824 USA.

Department of Bio and Brain Engineering and Department of Mathematical Sciences at the Korea Advanced Institute of Science & Technology (KAIST), Daejeon, South Korea.

出版信息

Proc IEEE Inst Electr Electron Eng. 2020 Jan;108(1):86-109. doi: 10.1109/JPROC.2019.2936204. Epub 2019 Sep 19.

Abstract

The field of medical image reconstruction has seen roughly four types of methods. The first type tended to be analytical methods, such as filtered back-projection (FBP) for X-ray computed tomography (CT) and the inverse Fourier transform for magnetic resonance imaging (MRI), based on simple mathematical models for the imaging systems. These methods are typically fast, but have suboptimal properties such as poor resolution-noise trade-off for CT. A second type is iterative reconstruction methods based on more complete models for the imaging system physics and, where appropriate, models for the sensor statistics. These iterative methods improved image quality by reducing noise and artifacts. The FDA-approved methods among these have been based on relatively simple regularization models. A third type of methods has been designed to accommodate modified data acquisition methods, such as reduced sampling in MRI and CT to reduce scan time or radiation dose. These methods typically involve mathematical image models involving assumptions such as or . A fourth type of methods replaces mathematically designed models of signals and systems with or models inspired by the field of . This paper focuses on the two most recent trends in medical image reconstruction: methods based on sparsity or low-rank models, and data-driven methods based on machine learning techniques.

摘要

医学图像重建领域大致出现了四种类型的方法。第一种类型往往是解析方法,例如用于X射线计算机断层扫描(CT)的滤波反投影(FBP)以及用于磁共振成像(MRI)的傅里叶逆变换,这些方法基于成像系统的简单数学模型。这些方法通常速度很快,但具有次优特性,例如CT的分辨率与噪声权衡较差。第二种类型是迭代重建方法,基于成像系统物理的更完整模型,并在适当情况下基于传感器统计模型。这些迭代方法通过减少噪声和伪影来提高图像质量。其中获得美国食品药品监督管理局(FDA)批准的方法基于相对简单的正则化模型。第三种类型的方法旨在适应修改后的数据采集方法,例如在MRI和CT中减少采样以减少扫描时间或辐射剂量。这些方法通常涉及数学图像模型,包含诸如 或 之类的假设。第四种类型的方法用受 领域启发的 或 模型取代信号和系统的数学设计模型。本文重点关注医学图像重建中的两个最新趋势:基于稀疏性或低秩模型的方法,以及基于机器学习技术的数据驱动方法。

相似文献

1
Image Reconstruction: From Sparsity to Data-adaptive Methods and Machine Learning.图像重建:从稀疏性到数据自适应方法与机器学习
Proc IEEE Inst Electr Electron Eng. 2020 Jan;108(1):86-109. doi: 10.1109/JPROC.2019.2936204. Epub 2019 Sep 19.
5
Fourier Domain Robust Denoising Decomposition and Adaptive Patch MRI Reconstruction.傅里叶域鲁棒去噪分解与自适应块MRI重建
IEEE Trans Neural Netw Learn Syst. 2024 Jun;35(6):7299-7311. doi: 10.1109/TNNLS.2022.3222394. Epub 2024 Jun 3.
8
[Compressed sensing magnetic resonance image reconstruction based on double sparse model].基于双稀疏模型的压缩感知磁共振图像重建
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2018 Oct 25;35(5):688-696. doi: 10.7507/1001-5515.201607006.

引用本文的文献

8
UNCERTAINTY-GUIDED PHYSICS-DRIVEN DEEP LEARNING RECONSTRUCTION VIA CYCLIC MEASUREMENT CONSISTENCY.通过循环测量一致性实现不确定性引导的物理驱动深度学习重建
Proc IEEE Int Conf Acoust Speech Signal Process. 2024 Apr;2024:13441-13445. doi: 10.1109/icassp48485.2024.10447594. Epub 2024 Mar 18.

本文引用的文献

4
Locally Low-Rank Tensor Regularization for High-Resolution Quantitative Dynamic MRI.用于高分辨率定量动态磁共振成像的局部低秩张量正则化
Int Workshop Comput Adv Multisens Adapt Process. 2017 Dec;2017. doi: 10.1109/CAMSAP.2017.8313075. Epub 2018 Mar 12.
6
ACCELERATING MAGNETIC RESONANCE IMAGING VIA DEEP LEARNING.通过深度学习加速磁共振成像
Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:514-517. doi: 10.1109/ISBI.2016.7493320. Epub 2016 Jun 16.
8
Convolutional Analysis Operator Learning: Acceleration and Convergence.卷积分析算子学习:加速与收敛。
IEEE Trans Image Process. 2020;29(1):2108-2122. doi: 10.1109/TIP.2019.2937734. Epub 2019 Sep 2.
10
k-Space deep learning for reference-free EPI ghost correction.k 空间深度学习用于无参考 EPI 鬼影校正。
Magn Reson Med. 2019 Dec;82(6):2299-2313. doi: 10.1002/mrm.27896. Epub 2019 Jul 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验