Suppr超能文献

使用光学相干断层扫描(OCT)引导和/或机器人辅助眼科镊子对显微手术任务进行评估。

Evaluation of microsurgical tasks with OCT-guided and/or robot-assisted ophthalmic forceps.

作者信息

Yu Haoran, Shen Jin-Hui, Shah Rohan J, Simaan Nabil, Joos Karen M

机构信息

Mechanical Engineering, Vanderbilt University, 2400 Highland Ave Nashville, TN 37212, USA ; Vanderbilt Initiative in Surgery and Engineering(ViSE), Vanderbilt University 2525 West End Avenue, 6th Floor, Nashville, TN 37203, USA.

Vanderbilt Eye Institute, Vanderbilt University 2311 Pierce Avenue Nashville, TN 37232, USA ; Vanderbilt Initiative in Surgery and Engineering(ViSE), Vanderbilt University 2525 West End Avenue, 6th Floor, Nashville, TN 37203, USA.

出版信息

Biomed Opt Express. 2015 Jan 9;6(2):457-72. doi: 10.1364/BOE.6.000457. eCollection 2015 Feb 1.

Abstract

Real-time intraocular optical coherence tomography (OCT) visualization of tissues with surgical feedback can enhance retinal surgery. An intraocular 23-gauge B-mode forward-imaging co-planar OCT-forceps, coupling connectors and algorithms were developed to form a unique ophthalmic surgical robotic system. Approach to the surface of a phantom or goat retina by a manual or robotic-controlled forceps, with and without real-time OCT guidance, was performed. Efficiency of lifting phantom membranes was examined. Placing the co-planar OCT imaging probe internal to the surgical tool reduced instrument shadowing and permitted constant tracking. Robotic assistance together with real-time OCT feedback improved depth perception accuracy. The first-generation integrated OCT-forceps was capable of peeling membrane phantoms despite smooth tips.

摘要

具有手术反馈功能的实时眼内光学相干断层扫描(OCT)对组织的可视化能够提升视网膜手术效果。开发了一种眼内23号B型前向成像共面OCT镊子、耦合连接器和算法,以形成一个独特的眼科手术机器人系统。使用手动或机器人控制的镊子,在有和没有实时OCT引导的情况下,对模拟物或山羊视网膜表面进行操作。检测了提起模拟膜的效率。将共面OCT成像探头放置在手术工具内部可减少器械阴影并实现持续跟踪。机器人辅助与实时OCT反馈相结合提高了深度感知准确性。尽管第一代集成OCT镊子的尖端很光滑,但仍能够剥离模拟膜。

相似文献

1
Evaluation of microsurgical tasks with OCT-guided and/or robot-assisted ophthalmic forceps.
Biomed Opt Express. 2015 Jan 9;6(2):457-72. doi: 10.1364/BOE.6.000457. eCollection 2015 Feb 1.
2
Preliminary Design and Evaluation of a B-Scan OCT-Guided Needle.
Photonics. 2014 Sep;1(3):260-266. doi: 10.3390/photonics1030260.
3
Fiber-optic OCT sensor guided "SMART" micro-forceps for microsurgery.
Biomed Opt Express. 2013 Jun 4;4(7):1045-50. doi: 10.1364/BOE.4.001045. Print 2013 Jul 1.
5
Automated stereo vision instrument tracking for intraoperative OCT guided anterior segment ophthalmic surgical maneuvers.
Biomed Opt Express. 2015 Jul 23;6(8):3014-31. doi: 10.1364/BOE.6.003014. eCollection 2015 Aug 1.
6
Intraoperative optical coherence tomography-compatible surgical instruments for real-time image-guided ophthalmic surgery.
Br J Ophthalmol. 2017 Oct;101(10):1306-1308. doi: 10.1136/bjophthalmol-2017-310530. Epub 2017 Jul 20.
7
Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers.
Biomed Opt Express. 2014 May 20;5(6):1877-85. doi: 10.1364/BOE.5.001877. eCollection 2014 Jun 1.
8
Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):108-15. doi: 10.1007/978-3-642-04268-3_14.
9
Dynamic intraoperative optical coherence tomography for inverted internal limiting membrane flap technique in large macular hole surgery.
Graefes Arch Clin Exp Ophthalmol. 2019 Aug;257(8):1649-1659. doi: 10.1007/s00417-019-04364-5. Epub 2019 May 28.
10
A robotic microsurgical forceps for transoral laser microsurgery.
Int J Comput Assist Radiol Surg. 2019 Feb;14(2):321-333. doi: 10.1007/s11548-018-1887-3. Epub 2018 Nov 21.

引用本文的文献

1
A novel robot-assisted subretinal injection system: preliminary validation in ex vivo porcine eyes.
J Robot Surg. 2025 Jul 10;19(1):367. doi: 10.1007/s11701-025-02521-z.
2
Robotics and optical coherence tomography: current works and future perspectives [Invited].
Biomed Opt Express. 2025 Jan 16;16(2):578-602. doi: 10.1364/BOE.547943. eCollection 2025 Feb 1.
3
Heads-up 3-Dimensional Visualization to Enhance Video Endoscopy During Vitreoretinal Surgery.
J Vitreoretin Dis. 2024 May 11;8(4):428-434. doi: 10.1177/24741264241249527. eCollection 2024 Jul-Aug.
5
Design of an endoscopic OCT probe based on piezoelectric tube with quartered outside electrodes.
Front Bioeng Biotechnol. 2024 Apr 24;12:1391630. doi: 10.3389/fbioe.2024.1391630. eCollection 2024.
6
Liquid-Driven Microinjection System for Precise Fundus Injection.
Sensors (Basel). 2024 Mar 27;24(7):2140. doi: 10.3390/s24072140.
7
The State-of-the-Art and Perspectives of Laser Ablation for Tumor Treatment.
Cyborg Bionic Syst. 2024 Jan 5;5:0062. doi: 10.34133/cbsystems.0062. eCollection 2024.
8
Microsurgery Robots: Applications, Design, and Development.
Sensors (Basel). 2023 Oct 16;23(20):8503. doi: 10.3390/s23208503.
9
Using the language of surgery to enhance ophthalmology surgical education.
Surg Open Sci. 2023 Jul 14;14:52-59. doi: 10.1016/j.sopen.2023.07.002. eCollection 2023 Aug.
10
OCT-guided Robotic Subretinal Needle Injections: A Deep Learning-Based Registration Approach.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2022 Dec;2022:781-786. doi: 10.1109/bibm55620.2022.9995143. Epub 2023 Jan 2.

本文引用的文献

2
Quantitative 3D-OCT motion correction with tilt and illumination correction, robust similarity measure and regularization.
Biomed Opt Express. 2014 Jul 11;5(8):2591-613. doi: 10.1364/BOE.5.002591. eCollection 2014 Aug 1.
3
Precise montaging and metric quantification of retinal surface area from ultra-widefield fundus photography and fluorescein angiography.
Ophthalmic Surg Lasers Imaging Retina. 2014 Jul-Aug;45(4):312-7. doi: 10.3928/23258160-20140709-07.
4
Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers.
Biomed Opt Express. 2014 May 20;5(6):1877-85. doi: 10.1364/BOE.5.001877. eCollection 2014 Jun 1.
8
Vision-Based Control of a Handheld Surgical Micromanipulator with Virtual Fixtures.
IEEE Trans Robot. 2013 Feb 19;29(3):674-683. doi: 10.1109/TRO.2013.2239552.
10
Miniature real-time intraoperative forward-imaging optical coherence tomography probe.
Biomed Opt Express. 2013 Jul 16;4(8):1342-50. doi: 10.1364/BOE.4.001342. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验