Suppr超能文献

一种用于预测重度抑郁症患者对选择性5-羟色胺再摄取抑制剂(SSRI)反应的静息-活动生物标志物。

A rest-activity biomarker to predict response to SSRIs in major depressive disorder.

作者信息

McCall W Vaughn

机构信息

Department of Psychiatry and Health Behavior, Medical College of Georgia at Georgia Regents University, 997 St Sebastian Way, Augusta, Georgia 30912, USA.

出版信息

J Psychiatr Res. 2015 May;64:19-22. doi: 10.1016/j.jpsychires.2015.02.023. Epub 2015 Mar 6.

Abstract

Most adults with Major Depressive Disorder (MDD) will not experience a remission with the first antidepressant trial. No practical biomarkers presently exist to predict responsiveness to antidepressants. Herein we report pilot data for a rest-activity biomarker of antidepressant response. Fifty-eight medication-free adults with MDD underwent a week-long collection of actigraphic data before beginning a 9 week open label trial of fluoxetine, coupled with blinded randomized assignment to eszopiclone/placebo. Depression severity was repeatedly measured with the Hamilton Rating Scale for Depression (HRSD). Baseline actigraphic data was analyzed with functional data analysis to create smoothed 24-h curves of activity. The time of the lowest point of activity (the bathyphase) was calculated for each patient, as well the mean difference between bedtime and the bathyphase (BBD). At the end of treatment, patients were characterized as treatment responders (50% reduction in HRSD) or non-responders, and receiver operating curves were calculated to find the optimal cut point of the BBD for prediction of treatment response. The best cut point for BBD was at 260.2 min, resulting in an effect size of 1.45, and with a positive predictive value of 0.75 and a negative predictive value of 0.88. We conclude that actigraphically-determined measures of rest-activity patterns show promise as potential biomarker predictors of antidepressant response. However, this conclusion is based upon a small number of patients who received only one choice of antidepressant, for a single trial. Replication with a larger sample is needed.

摘要

大多数患有重度抑郁症(MDD)的成年人在首次进行抗抑郁药物试验时不会出现症状缓解。目前还没有实用的生物标志物来预测对抗抑郁药物的反应。在此,我们报告了一项关于抗抑郁反应的静息-活动生物标志物的初步数据。58名未服用过药物的MDD成年人在开始为期9周的氟西汀开放标签试验之前,进行了为期一周的活动记录仪数据收集,并被随机双盲分配至eszopiclone/安慰剂组。使用汉密尔顿抑郁评定量表(HRSD)反复测量抑郁严重程度。对基线活动记录仪数据进行功能数据分析,以创建平滑的24小时活动曲线。计算每位患者活动最低点(低谷期)的时间,以及就寝时间与低谷期之间的平均差值(BBD)。在治疗结束时,将患者分为治疗反应者(HRSD降低50%)或无反应者,并计算受试者工作曲线以找到预测治疗反应的BBD最佳切点。BBD的最佳切点为260.2分钟,效应大小为1.45,阳性预测值为0.75,阴性预测值为0.88。我们得出结论,通过活动记录仪确定的静息-活动模式测量结果有望成为抗抑郁反应的潜在生物标志物预测指标。然而,这一结论是基于少量仅接受一种抗抑郁药物选择的患者进行的单一试验得出的。需要更大样本量的重复研究。

相似文献

1
A rest-activity biomarker to predict response to SSRIs in major depressive disorder.
J Psychiatr Res. 2015 May;64:19-22. doi: 10.1016/j.jpsychires.2015.02.023. Epub 2015 Mar 6.
3
Evaluation of interleukin-6 and serotonin as biomarkers to predict response to fluoxetine.
Hum Psychopharmacol. 2016 May;31(3):178-84. doi: 10.1002/hup.2525. Epub 2016 Mar 27.
4
The antidepressant treatment response index and treatment outcomes in a placebo-controlled trial of fluoxetine.
J Clin Neurophysiol. 2011 Oct;28(5):478-82. doi: 10.1097/WNP.0b013e318230da8a.
9
[Use of antidepressant drugs in schizophrenic patients with depression].
Encephale. 2006 Mar-Apr;32(2 Pt 1):263-9. doi: 10.1016/s0013-7006(06)76153-x.
10
Insomnia severity is an indicator of suicidal ideation during a depression clinical trial.
Sleep Med. 2010 Oct;11(9):822-7. doi: 10.1016/j.sleep.2010.04.004. Epub 2010 May 15.

引用本文的文献

1
An exploration of actigraphy in the context of ketamine and treatment-resistant depression.
Int J Methods Psychiatr Res. 2023 Sep 5;33(1):e1984. doi: 10.1002/mpr.1984.
3
Association Between Time Spent on Electronic Devices and Body Mass Index in Young Adults.
J Multidiscip Healthc. 2022 Sep 28;15:2169-2176. doi: 10.2147/JMDH.S376689. eCollection 2022.
4
Digital health tools for the passive monitoring of depression: a systematic review of methods.
NPJ Digit Med. 2022 Jan 11;5(1):3. doi: 10.1038/s41746-021-00548-8.
5
Comparison of actigraphy indices among patients with depression and schizophrenia: A preliminary study.
J Family Med Prim Care. 2021 Sep;10(9):3406-3410. doi: 10.4103/jfmpc.jfmpc_1693_20. Epub 2021 Sep 30.
7
Reducing Suicidal Ideation Through Insomnia Treatment (REST-IT): A Randomized Clinical Trial.
Am J Psychiatry. 2019 Nov 1;176(11):957-965. doi: 10.1176/appi.ajp.2019.19030267. Epub 2019 Sep 20.
8
Wearables in Medicine.
Adv Mater. 2018 Jun 11;30(33):e1706910. doi: 10.1002/adma.201706910.
9
Biomarkers for depression: recent insights, current challenges and future prospects.
Neuropsychiatr Dis Treat. 2017 May 10;13:1245-1262. doi: 10.2147/NDT.S114542. eCollection 2017.

本文引用的文献

1
Risk factors for treatment resistance in unipolar depression: a systematic review.
J Affect Disord. 2015 Jan 15;171:137-41. doi: 10.1016/j.jad.2014.09.020. Epub 2014 Oct 8.
2
Actigraphy in patients with treatment-resistant depression undergoing electroconvulsive therapy.
J Psychiatr Res. 2014 Oct;57:96-100. doi: 10.1016/j.jpsychires.2014.06.006. Epub 2014 Jun 24.
4
The NIMH Research Domain Criteria (RDoC) Project: precision medicine for psychiatry.
Am J Psychiatry. 2014 Apr;171(4):395-7. doi: 10.1176/appi.ajp.2014.14020138.
5
Age-related effects on circadian phase in the sleep of patients with depression and insomnia.
Behav Sleep Med. 2015;13(3):208-16. doi: 10.1080/15402002.2013.855213. Epub 2014 Mar 21.
6
Like melatonin, agomelatine (S20098) increases the amplitude of oscillations of two clock outputs: melatonin and temperature rhythms.
Chronobiol Int. 2014 Apr;31(3):371-81. doi: 10.3109/07420528.2013.860457. Epub 2013 Dec 11.
7
Characterization of treatment resistant depression episodes in a cohort of patients from a US commercial claims database.
PLoS One. 2013 Oct 18;8(10):e76882. doi: 10.1371/journal.pone.0076882. eCollection 2013.
8
The suprachiasmatic nucleus and the circadian timing system.
Prog Mol Biol Transl Sci. 2013;119:1-28. doi: 10.1016/B978-0-12-396971-2.00001-4.
10
Toward the future of psychiatric diagnosis: the seven pillars of RDoC.
BMC Med. 2013 May 14;11:126. doi: 10.1186/1741-7015-11-126.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验