Department of Chemistry, University of California, Berkeley, California 94720.
Annu Rev Biochem. 2015;84:923-46. doi: 10.1146/annurev-biochem-060614-034439. Epub 2015 Mar 12.
Polysaccharide monooxygenases (PMOs), also known as lytic PMOs (LPMOs), enhance the depolymerization of recalcitrant polysaccharides by hydrolytic enzymes and are found in the majority of cellulolytic fungi and actinomycete bacteria. For more than a decade, PMOs were incorrectly annotated as family 61 glycoside hydrolases (GH61s) or family 33 carbohydrate-binding modules (CBM33s). PMOs have an unusual surface-exposed active site with a tightly bound Cu(II) ion that catalyzes the regioselective hydroxylation of crystalline cellulose, leading to glycosidic bond cleavage. The genomes of some cellulolytic fungi contain more than 20 genes encoding cellulose-active PMOs, suggesting a diversity of biological activities. PMOs show great promise in reducing the cost of conversion of lignocellulosic biomass to fermentable sugars; however, many questions remain about their reaction mechanism and biological function. This review addresses, in depth, the structural and mechanistic aspects of oxidative depolymerization of cellulose by PMOs and considers their biological function and phylogenetic diversity.
多糖单加氧酶(PMOs),也被称为裂解多糖单加氧酶(LPMOs),通过水解酶增强了难降解多糖的解聚作用,存在于大多数纤维素分解真菌和放线菌细菌中。十多年来,PMOs 被错误地注释为糖苷水解酶家族 61(GH61)或碳水化合物结合模块家族 33(CBM33)。PMOs 具有不寻常的表面暴露活性位点,其中紧密结合的 Cu(II) 离子催化结晶纤维素的区域选择性羟化,导致糖苷键断裂。一些纤维素分解真菌的基因组包含 20 多个编码纤维素活性 PMOs 的基因,表明其具有多种生物学活性。PMOs 在降低木质纤维素生物质转化为可发酵糖的成本方面具有巨大的潜力;然而,关于它们的反应机制和生物学功能仍有许多问题需要解答。本文深入探讨了 PMOs 对纤维素进行氧化解聚的结构和机制方面,并考虑了它们的生物学功能和系统发育多样性。