Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8.
Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9.
J Mol Biol. 2015 Aug 14;427(16):2599-609. doi: 10.1016/j.jmb.2015.03.006. Epub 2015 Mar 14.
Large GTPases of the dynamin superfamily promote membrane fusion and division, processes that are crucial for intracellular trafficking and organellar dynamics. To promote membrane scission, dynamin proteins polymerize, wrap around, and constrict the membrane; however, the mechanism underlying their role in membrane fusion remains unclear. We previously reported that the mitochondrial dynamin-related protein mitochondrial genome maintenance 1 (Mgm1) mediates fusion by first tethering opposing membranes and then undergoing a nucleotide-dependent structural transition. However, it is still unclear how Mgm1 directly affects the membrane to drive fusion of tethered membranes. Here, we show that Mgm1 association with the membrane alters the topography of the membrane, promoting local membrane bending. We also demonstrate that Mgm1 creates membrane ruffles resulting in the formation of tubular structures on both supported lipid bilayers and liposomes. These data suggest that Mgm1 membrane interactions impose a mechanical force on the membrane to overcome the hydrophilic repulsion of the phospholipid head groups and initiate the fusion reaction. The work reported here provides new insights into a possible mechanism of Mgm1-driven mitochondrial membrane fusion and sheds light into how members of the dynamin superfamily function as fusion molecules.
动力蛋白超家族的大型 GTPases 促进膜融合和分裂,这些过程对于细胞内运输和细胞器动态至关重要。为了促进膜分裂,动力蛋白蛋白聚合、包裹并收缩膜;然而,它们在膜融合中的作用机制仍不清楚。我们之前报道过,线粒体相关 dynamin 蛋白线粒体基因组维持 1(Mgm1)通过首先连接对向膜,然后经历核苷酸依赖性结构转变来介导融合。然而,Mgm1 如何直接影响膜以驱动连接的膜融合仍然不清楚。在这里,我们表明 Mgm1 与膜的结合改变了膜的拓扑结构,促进了局部膜弯曲。我们还证明 Mgm1 在支持的脂质双层和脂质体上产生膜皱襞,导致管状结构的形成。这些数据表明,Mgm1 与膜的相互作用对膜施加机械力,以克服磷脂头部基团的亲水性排斥并启动融合反应。这里报道的工作为 Mgm1 驱动的线粒体膜融合的可能机制提供了新的见解,并阐明了 dynamin 超家族成员如何作为融合分子发挥作用。