Suppr超能文献

膜连接和核苷酸依赖的构象变化驱动线粒体基因组维持(Mgm1)蛋白介导的膜融合。

Membrane tethering and nucleotide-dependent conformational changes drive mitochondrial genome maintenance (Mgm1) protein-mediated membrane fusion.

机构信息

Department of Biotechnology and Food Engineering Technion, Technion-Israel Institute of Technology, Haifa 32000, Israel.

出版信息

J Biol Chem. 2012 Oct 26;287(44):36634-8. doi: 10.1074/jbc.C112.406769. Epub 2012 Sep 12.

Abstract

Cellular membrane remodeling events such as mitochondrial dynamics, vesicle budding, and cell division rely on the large GTPases of the dynamin superfamily. Dynamins have long been characterized as fission molecules; however, how they mediate membrane fusion is largely unknown. Here we have characterized by cryo-electron microscopy and in vitro liposome fusion assays how the mitochondrial dynamin Mgm1 may mediate membrane fusion. Using cryo-EM, we first demonstrate that the Mgm1 complex is able to tether opposing membranes to a gap of ∼15 nm, the size of mitochondrial cristae folds. We further show that the Mgm1 oligomer undergoes a dramatic GTP-dependent conformational change suggesting that s-Mgm1 interactions could overcome repelling forces at fusion sites and that ultrastructural changes could promote the fusion of opposing membranes. Together our findings provide mechanistic details of the two known in vivo functions of Mgm1, membrane fusion and cristae maintenance, and more generally shed light onto how dynamins may function as fusion proteins.

摘要

细胞的膜重塑事件,如线粒体动力学、小泡出芽和细胞分裂,都依赖于动力蛋白超家族的大型 GTP 酶。动力蛋白长期以来一直被认为是分裂分子;然而,它们如何介导膜融合在很大程度上是未知的。在这里,我们通过冷冻电子显微镜和体外脂质体融合实验来描述线粒体动力蛋白 Mgm1 如何介导膜融合。通过冷冻电镜,我们首先证明 Mgm1 复合物能够将相对的膜系到一个约 15nm 的间隙上,这个大小与线粒体嵴折叠的大小一致。我们进一步表明,Mgm1 寡聚体发生了剧烈的 GTP 依赖性构象变化,这表明 s-Mgm1 相互作用可以克服融合部位的排斥力,超微结构的变化可以促进相对膜的融合。总的来说,我们的发现提供了 Mgm1 的两种已知的体内功能(膜融合和嵴维持)的机制细节,更普遍地揭示了动力蛋白如何作为融合蛋白发挥作用。

相似文献

7
Structure and assembly of the mitochondrial membrane remodelling GTPase Mgm1.线粒体膜重塑 GTP 酶 Mgm1 的结构与组装
Nature. 2019 Jul;571(7765):429-433. doi: 10.1038/s41586-019-1372-3. Epub 2019 Jul 10.

引用本文的文献

1
Molecular machineries shaping the mitochondrial inner membrane.塑造线粒体内膜的分子机制。
Nat Rev Mol Cell Biol. 2025 May 14. doi: 10.1038/s41580-025-00854-z.
4
Proteolytic regulation of mitochondrial dynamics.线粒体动力学的蛋白水解调节。
Mitochondrion. 2019 Nov;49:289-304. doi: 10.1016/j.mito.2019.04.008. Epub 2019 Apr 25.
10
Shaping the dynamic mitochondrial network.塑造动态的线粒体网络。
BMC Biol. 2014 May 27;12:35. doi: 10.1186/1741-7007-12-35.

本文引用的文献

2
The crystal structure of dynamin.动力蛋白的晶体结构。
Nature. 2011 Sep 18;477(7366):561-6. doi: 10.1038/nature10441.
6
8
Model systems for membrane fusion.膜融合的模型系统。
Chem Soc Rev. 2011 Mar;40(3):1572-85. doi: 10.1039/c0cs00115e. Epub 2010 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验