Cell Architecture Laboratory, National Institute of Genetics Mishima, Japan ; Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies) Mishima, Japan ; Transdisciplinary Research Integration Center and Data Centric Science Research Commons, Research Organization of Information and Systems Tokyo, Japan.
Quantitative Life Sciences Unit, The Abdus Salam International Centre for Theoretical Physics Trieste, Italy.
Front Physiol. 2015 Mar 3;6:60. doi: 10.3389/fphys.2015.00060. eCollection 2015.
Construction of quantitative models is a primary goal of quantitative biology, which aims to understand cellular and organismal phenomena in a quantitative manner. In this article, we introduce optimization procedures to search for parameters in a quantitative model that can reproduce experimental data. The aim of optimization is to minimize the sum of squared errors (SSE) in a prediction or to maximize likelihood. A (local) maximum of likelihood or (local) minimum of the SSE can efficiently be identified using gradient approaches. Addition of a stochastic process enables us to identify the global maximum/minimum without becoming trapped in local maxima/minima. Sampling approaches take advantage of increasing computational power to test numerous sets of parameters in order to determine the optimum set. By combining Bayesian inference with gradient or sampling approaches, we can estimate both the optimum parameters and the form of the likelihood function related to the parameters. Finally, we introduce four examples of research that utilize parameter optimization to obtain biological insights from quantified data: transcriptional regulation, bacterial chemotaxis, morphogenesis, and cell cycle regulation. With practical knowledge of parameter optimization, cell and developmental biologists can develop realistic models that reproduce their observations and thus, obtain mechanistic insights into phenomena of interest.
定量模型的构建是定量生物学的主要目标,旨在以定量的方式理解细胞和机体现象。在本文中,我们介绍了优化程序,以搜索能够再现实验数据的定量模型中的参数。优化的目的是最小化预测中的均方误差(SSE)或最大化似然。可以使用梯度方法有效地确定似然的局部最大值/最小值或 SSE 的局部最大值/最小值。添加随机过程可以使我们能够识别全局最大值/最小值,而不会陷入局部最大值/最小值。采样方法利用不断增加的计算能力来测试大量的参数集,以确定最优参数集。通过将贝叶斯推断与梯度或采样方法相结合,我们可以估计最优参数和与参数相关的似然函数的形式。最后,我们介绍了四个利用参数优化从定量数据中获得生物学见解的研究示例:转录调控、细菌趋化性、形态发生和细胞周期调控。有了参数优化的实际知识,细胞和发育生物学家可以开发出能够再现他们的观察结果的现实模型,从而获得对感兴趣现象的机制见解。