Suppr超能文献

人类染色质状态的广泛变异。

Extensive variation in chromatin states across humans.

机构信息

Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.

出版信息

Science. 2013 Nov 8;342(6159):750-2. doi: 10.1126/science.1242510. Epub 2013 Oct 17.

Abstract

The majority of disease-associated variants lie outside protein-coding regions, suggesting a link between variation in regulatory regions and disease predisposition. We studied differences in chromatin states using five histone modifications, cohesin, and CTCF in lymphoblastoid lines from 19 individuals of diverse ancestry. We found extensive signal variation in regulatory regions, which often switch between active and repressed states across individuals. Enhancer activity is particularly diverse among individuals, whereas gene expression remains relatively stable. Chromatin variability shows genetic inheritance in trios, correlates with genetic variation and population divergence, and is associated with disruptions of transcription factor binding motifs. Overall, our results provide insights into chromatin variation among humans.

摘要

大多数与疾病相关的变异位于蛋白编码区之外,这表明调控区域的变异与疾病易感性之间存在联系。我们使用五种组蛋白修饰、黏合蛋白和 CTCF 在来自不同祖先的 19 个人的淋巴母细胞系中研究了染色质状态的差异。我们发现调控区域的信号变化广泛,个体之间的活性和抑制状态经常转换。增强子活性在个体之间特别多样化,而基因表达相对稳定。染色质可变性在三核苷酸中具有遗传继承性,与遗传变异和种群分歧相关,并与转录因子结合基序的破坏相关。总的来说,我们的结果提供了人类染色质变异的见解。

相似文献

1
Extensive variation in chromatin states across humans.
Science. 2013 Nov 8;342(6159):750-2. doi: 10.1126/science.1242510. Epub 2013 Oct 17.
2
Cohesin mediates chromatin interactions that regulate mammalian β-globin expression.
J Biol Chem. 2011 May 20;286(20):17870-8. doi: 10.1074/jbc.M110.207365. Epub 2011 Mar 29.
3
A role for CTCF and cohesin in subtelomere chromatin organization, TERRA transcription, and telomere end protection.
EMBO J. 2012 Nov 5;31(21):4165-78. doi: 10.1038/emboj.2012.266. Epub 2012 Sep 25.
4
Genome-wide studies of CCCTC-binding factor (CTCF) and cohesin provide insight into chromatin structure and regulation.
J Biol Chem. 2012 Sep 7;287(37):30906-13. doi: 10.1074/jbc.R111.324962. Epub 2012 Sep 5.
5
The genomic landscape of cohesin-associated chromatin interactions.
Genome Res. 2013 Aug;23(8):1224-34. doi: 10.1101/gr.156570.113. Epub 2013 May 23.
7
CTCF: the protein, the binding partners, the binding sites and their chromatin loops.
Philos Trans R Soc Lond B Biol Sci. 2013 May 6;368(1620):20120369. doi: 10.1098/rstb.2012.0369. Print 2013.
8
Cohesins repress Kaposi's sarcoma-associated herpesvirus immediate early gene transcription during latency.
J Virol. 2012 Sep;86(17):9454-64. doi: 10.1128/JVI.00787-12. Epub 2012 Jun 27.
9
Members of an array of zinc-finger proteins specify distinct Hox chromatin boundaries.
Mol Cell. 2024 Sep 19;84(18):3406-3422.e6. doi: 10.1016/j.molcel.2024.08.007. Epub 2024 Aug 21.

引用本文的文献

2
Long-read transcriptomics of a diverse human cohort reveals widespread ancestry bias in gene annotation.
bioRxiv. 2025 Mar 17:2025.03.14.643250. doi: 10.1101/2025.03.14.643250.
4
Epigenetics and individuality: from concepts to causality across timescales.
Nat Rev Genet. 2025 Jun;26(6):406-423. doi: 10.1038/s41576-024-00804-z. Epub 2025 Jan 9.
6
Integrative multi-omics analyses to identify the genetic and functional mechanisms underlying ovarian cancer risk regions.
Am J Hum Genet. 2024 Jun 6;111(6):1061-1083. doi: 10.1016/j.ajhg.2024.04.011. Epub 2024 May 8.
7
Removing unwanted variation between samples in Hi-C experiments.
Brief Bioinform. 2024 Mar 27;25(3). doi: 10.1093/bib/bbae217.
8
The regulation of methylation on the Z chromosome and the identification of multiple novel Male Hyper-Methylated regions in the chicken.
PLoS Genet. 2024 Mar 8;20(3):e1010719. doi: 10.1371/journal.pgen.1010719. eCollection 2024 Mar.
9
Epigenetic variation impacts individual differences in the transcriptional response to influenza infection.
Nat Genet. 2024 Mar;56(3):408-419. doi: 10.1038/s41588-024-01668-z. Epub 2024 Feb 29.

本文引用的文献

1
Architecture of the human regulatory network derived from ENCODE data.
Nature. 2012 Sep 6;489(7414):91-100. doi: 10.1038/nature11245.
2
Personal omics profiling reveals dynamic molecular and medical phenotypes.
Cell. 2012 Mar 16;148(6):1293-307. doi: 10.1016/j.cell.2012.02.009.
3
ChromHMM: automating chromatin-state discovery and characterization.
Nat Methods. 2012 Feb 28;9(3):215-6. doi: 10.1038/nmeth.1906.
4
DNase I sensitivity QTLs are a major determinant of human expression variation.
Nature. 2012 Feb 5;482(7385):390-4. doi: 10.1038/nature10808.
5
Effects of sequence variation on differential allelic transcription factor occupancy and gene expression.
Genome Res. 2012 May;22(5):860-9. doi: 10.1101/gr.131201.111. Epub 2012 Feb 2.
6
A map of human genome variation from population-scale sequencing.
Nature. 2010 Oct 28;467(7319):1061-73. doi: 10.1038/nature09534.
7
Differential expression analysis for sequence count data.
Genome Biol. 2010;11(10):R106. doi: 10.1186/gb-2010-11-10-r106. Epub 2010 Oct 27.
8
GREAT improves functional interpretation of cis-regulatory regions.
Nat Biotechnol. 2010 May;28(5):495-501. doi: 10.1038/nbt.1630. Epub 2010 May 2.
9
Heritable individual-specific and allele-specific chromatin signatures in humans.
Science. 2010 Apr 9;328(5975):235-9. doi: 10.1126/science.1184655. Epub 2010 Mar 18.
10
Variation in transcription factor binding among humans.
Science. 2010 Apr 9;328(5975):232-5. doi: 10.1126/science.1183621. Epub 2010 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验