Suppr超能文献

药物协同作用驱动保守途径以延长裂殖酵母寿命。

Drug synergy drives conserved pathways to increase fission yeast lifespan.

作者信息

Huang Xinhe, Leggas Markos, Dickson Robert C

机构信息

Department of Molecular and Cellular Biochemistry and the Lucille Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America. nc.ude.utjws.emoh@gnauhehnix.

Department of Pharmaceutical Sciences and the Lucille Markey Cancer Center, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States of America.

出版信息

PLoS One. 2015 Mar 18;10(3):e0121877. doi: 10.1371/journal.pone.0121877. eCollection 2015.

Abstract

Aging occurs over time with gradual and progressive loss of physiological function. Strategies to reduce the rate of functional loss and mitigate the subsequent onset of deadly age-related diseases are being sought. We demonstrated previously that a combination of rapamycin and myriocin reduces age-related functional loss in the Baker's yeast Saccharomyces cerevisiae and produces a synergistic increase in lifespan. Here we show that the same drug combination also produces a synergistic increase in the lifespan of the fission yeast Schizosaccharomyces pombe and does so by controlling signal transduction pathways conserved across a wide evolutionary time span ranging from yeasts to mammals. Pathways include the target of rapamycin complex 1 (TORC1) protein kinase, the protein kinase A (PKA) and a stress response pathway, which in fission yeasts contains the Sty1 protein kinase, an ortholog of the mammalian p38 MAP kinase, a type of Stress Activated Protein Kinase (SAPK). These results along with previous studies in S. cerevisiae support the premise that the combination of rapamycin and myriocin enhances lifespan by regulating signaling pathways that couple nutrient and environmental conditions to cellular processes that fine-tune growth and stress protection in ways that foster long term survival. The molecular mechanisms for fine-tuning are probably species-specific, but since they are driven by conserved nutrient and stress sensing pathways, the drug combination may enhance survival in other organisms.

摘要

衰老随着时间的推移而发生,生理功能逐渐且持续丧失。人们正在寻找降低功能丧失速率并减轻随后致命的与年龄相关疾病发生的策略。我们之前证明,雷帕霉素和嗜球果伞素的组合可减少酿酒酵母中与年龄相关的功能丧失,并协同延长寿命。在此我们表明,相同的药物组合也能协同延长裂殖酵母粟酒裂殖酵母的寿命,并且是通过控制在从酵母到哺乳动物的广泛进化时间跨度中保守的信号转导途径来实现的。这些途径包括雷帕霉素靶蛋白复合物1(TORC1)蛋白激酶、蛋白激酶A(PKA)以及一条应激反应途径,在裂殖酵母中该途径包含Sty1蛋白激酶,它是哺乳动物p38丝裂原活化蛋白激酶(一种应激激活蛋白激酶,SAPK)的直系同源物。这些结果以及之前在酿酒酵母中的研究支持了这样一个前提,即雷帕霉素和嗜球果伞素的组合通过调节信号通路来延长寿命,这些信号通路将营养和环境条件与细胞过程联系起来,以微调生长和应激保护的方式促进长期生存。微调的分子机制可能具有物种特异性,但由于它们是由保守的营养和应激感应途径驱动的,这种药物组合可能会提高其他生物体的存活率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/352c/4364780/c8a2dbe3ad77/pone.0121877.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验