Suppr超能文献

使用人工神经网络分析开发QSAR模型,用于评估化妆品成分重复剂量、生殖和发育毒性的风险。

Development of QSAR models using artificial neural network analysis for risk assessment of repeated-dose, reproductive, and developmental toxicities of cosmetic ingredients.

作者信息

Hisaki Tomoka, Aiba Née Kaneko Maki, Yamaguchi Masahiko, Sasa Hitoshi, Kouzuki Hirokazu

机构信息

Shiseido Research Center, Shiseido Co. Ltd.

出版信息

J Toxicol Sci. 2015 Apr;40(2):163-80. doi: 10.2131/jts.40.163.

Abstract

Use of laboratory animals for systemic toxicity testing is subject to strong ethical and regulatory constraints, but few alternatives are yet available. One possible approach to predict systemic toxicity of chemicals in the absence of experimental data is quantitative structure-activity relationship (QSAR) analysis. Here, we present QSAR models for prediction of maximum "no observed effect level" (NOEL) for repeated-dose, developmental and reproductive toxicities. NOEL values of 421 chemicals for repeated-dose toxicity, 315 for reproductive toxicity, and 156 for developmental toxicity were collected from Japan Existing Chemical Data Base (JECDB). Descriptors to predict toxicity were selected based on molecular orbital (MO) calculations, and QSAR models employing multiple independent descriptors as the input layer of an artificial neural network (ANN) were constructed to predict NOEL values. Robustness of the models was indicated by the root-mean-square (RMS) errors after 10-fold cross-validation (0.529 for repeated-dose, 0.508 for reproductive, and 0.558 for developmental toxicity). Evaluation of the models in terms of the percentages of predicted NOELs falling within factors of 2, 5 and 10 of the in-vivo-determined NOELs suggested that the model is applicable to both general chemicals and the subset of chemicals listed in International Nomenclature of Cosmetic Ingredients (INCI). Our results indicate that ANN models using in silico parameters have useful predictive performance, and should contribute to integrated risk assessment of systemic toxicity using a weight-of-evidence approach. Availability of predicted NOELs will allow calculation of the margin of safety, as recommended by the Scientific Committee on Consumer Safety (SCCS).

摘要

将实验动物用于全身毒性测试受到严格的伦理和监管限制,但目前几乎没有其他替代方法。在缺乏实验数据的情况下,预测化学品全身毒性的一种可能方法是定量构效关系(QSAR)分析。在此,我们提出了用于预测重复剂量、发育和生殖毒性的最大“未观察到效应水平”(NOEL)的QSAR模型。从日本现有化学数据库(JECDB)收集了421种化学品的重复剂量毒性NOEL值、315种生殖毒性NOEL值和156种发育毒性NOEL值。基于分子轨道(MO)计算选择预测毒性的描述符,并构建以多个独立描述符作为人工神经网络(ANN)输入层的QSAR模型来预测NOEL值。通过10倍交叉验证后的均方根(RMS)误差表明模型的稳健性(重复剂量为0.529,生殖毒性为0.508,发育毒性为0.558)。根据预测的NOEL值落在体内测定的NOEL值的2、5和10倍因子范围内的百分比对模型进行评估,结果表明该模型适用于一般化学品以及国际化妆品成分命名(INCI)中列出的化学品子集。我们的结果表明,使用计算机参数的ANN模型具有有用的预测性能,并且应该有助于使用证据权重方法对全身毒性进行综合风险评估。如消费者安全科学委员会(SCCS)所建议的,预测的NOEL值的可用性将允许计算安全边际。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验