Suppr超能文献

器官水平毒性预测:将化学与不良反应相联系。

Prediction of Organ Level Toxicity: Linking Chemistry to Adverse Effects.

作者信息

Cronin Mark T D, Enoch Steven J, Mellor Claire L, Przybylak Katarzyna R, Richarz Andrea-Nicole, Madden Judith C

机构信息

School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, England.

出版信息

Toxicol Res. 2017 Jul;33(3):173-182. doi: 10.5487/TR.2017.33.3.173. Epub 2017 Jul 15.

Abstract

methods to predict toxicity include the use of (Quantitative) Structure-Activity Relationships ((Q)SARs) as well as grouping (category formation) allowing for read-across. A challenging area for modelling is the prediction of chronic toxicity and the No Observed (Adverse) Effect Level (NO(A)EL) in particular. A proposed solution to the prediction of chronic toxicity is to consider organ level effects, as opposed to modelling the NO(A)EL itself. This review has focussed on the use of structural alerts to identify potential liver toxicants. profilers, or groups of structural alerts, have been developed based on mechanisms of action and informed by current knowledge of Adverse Outcome Pathways. These profilers are robust and can be coded computationally to allow for prediction. However, they do not cover all mechanisms or modes of liver toxicity and recommendations for the improvement of these approaches are given.

摘要

预测毒性的方法包括使用(定量)构效关系((Q)SARs)以及进行分组(类别形成)以便进行类推。建模面临的一个具有挑战性的领域是慢性毒性的预测,尤其是无观察到(不良)效应水平(NO(A)EL)的预测。一种针对慢性毒性预测的建议解决方案是考虑器官水平的效应,而不是对NO(A)EL本身进行建模。本综述重点关注使用结构警报来识别潜在的肝脏毒物。已根据作用机制并结合当前对不良结局途径的了解,开发了特征图谱或结构警报组。这些特征图谱很可靠,可以进行计算编码以实现预测。然而,它们并未涵盖肝脏毒性的所有机制或模式,并给出了改进这些方法的建议。

相似文献

1
Prediction of Organ Level Toxicity: Linking Chemistry to Adverse Effects.
Toxicol Res. 2017 Jul;33(3):173-182. doi: 10.5487/TR.2017.33.3.173. Epub 2017 Jul 15.
3
A scheme to evaluate structural alerts to predict toxicity - Assessing confidence by characterising uncertainties.
Regul Toxicol Pharmacol. 2022 Nov;135:105249. doi: 10.1016/j.yrtph.2022.105249. Epub 2022 Aug 27.
6
approaches in organ toxicity hazard assessment: current status and future needs in predicting liver toxicity.
Comput Toxicol. 2021 Nov;20. doi: 10.1016/j.comtox.2021.100187. Epub 2021 Sep 9.
9
A review of the use of in silico methods to predict the chemistry of molecular initiating events related to drug toxicity.
Expert Opin Drug Metab Toxicol. 2011 Dec;7(12):1481-95. doi: 10.1517/17425255.2011.629186. Epub 2011 Oct 28.
10
Value and limitation of structure-based profilers to characterize developmental and reproductive toxicity potential.
Arch Toxicol. 2020 Mar;94(3):939-954. doi: 10.1007/s00204-020-02671-z. Epub 2020 Feb 25.

引用本文的文献

3
Predicting phase-I metabolism of piceatannol: an in silico study.
In Silico Pharmacol. 2024 Jun 5;12(1):52. doi: 10.1007/s40203-024-00228-x. eCollection 2024.
4
Recent advances and current challenges of new approach methodologies in developmental and adult neurotoxicity testing.
Arch Toxicol. 2024 May;98(5):1271-1295. doi: 10.1007/s00204-024-03703-8. Epub 2024 Mar 13.
5
Monte Carlo Models for Sub-Chronic Repeated-Dose Toxicity: Systemic and Organ-Specific Toxicity.
Int J Mol Sci. 2022 Jun 14;23(12):6615. doi: 10.3390/ijms23126615.
6
approaches in organ toxicity hazard assessment: current status and future needs in predicting liver toxicity.
Comput Toxicol. 2021 Nov;20. doi: 10.1016/j.comtox.2021.100187. Epub 2021 Sep 9.
8
Cardiovascular Effects of Polychlorinated Biphenyls and Their Major Metabolites.
Environ Health Perspect. 2020 Jul;128(7):77008. doi: 10.1289/EHP7030. Epub 2020 Jul 23.
10
Identification and Mechanism Exploration of Hepatotoxic Ingredients in Traditional Chinese Medicine.
Front Pharmacol. 2019 May 3;10:458. doi: 10.3389/fphar.2019.00458. eCollection 2019.

本文引用的文献

1
Thresholds of Toxicological Concern for cosmetics-related substances: New database, thresholds, and enrichment of chemical space.
Food Chem Toxicol. 2017 Nov;109(Pt 1):170-193. doi: 10.1016/j.fct.2017.08.043. Epub 2017 Sep 1.
2
Retrospective mining of toxicology data to discover multispecies and chemical class effects: Anemia as a case study.
Regul Toxicol Pharmacol. 2017 Jun;86:74-92. doi: 10.1016/j.yrtph.2017.02.015. Epub 2017 Feb 24.
3
In vitro testing of basal cytotoxicity: Establishment of an adverse outcome pathway from chemical insult to cell death.
Toxicol In Vitro. 2017 Mar;39:104-110. doi: 10.1016/j.tiv.2016.12.004. Epub 2016 Dec 7.
5
In Silico Studies of the Relationship Between Chemical Structure and Drug Induced Phospholipidosis.
Mol Inform. 2011 May 16;30(5):415-29. doi: 10.1002/minf.201000164. Epub 2011 May 5.
6
ToxCast Chemical Landscape: Paving the Road to 21st Century Toxicology.
Chem Res Toxicol. 2016 Aug 15;29(8):1225-51. doi: 10.1021/acs.chemrestox.6b00135. Epub 2016 Jul 20.
7
Chemical and in vitro biological information to predict mouse liver toxicity using recursive random forests.
SAR QSAR Environ Res. 2016 Jul;27(7):559-72. doi: 10.1080/1062936X.2016.1201142. Epub 2016 Jun 29.
8
Novel and mathematical models for the prediction of chemical toxicity.
Toxicol Res (Camb). 2013 Jan 1;2(1):40-59. doi: 10.1039/c2tx20031g. Epub 2012 Sep 5.
9
Computational Models for Human and Animal Hepatotoxicity with a Global Application Scope.
Chem Res Toxicol. 2016 May 16;29(5):757-67. doi: 10.1021/acs.chemrestox.5b00465. Epub 2016 Apr 6.
10
Toward Good Read-Across Practice (GRAP) guidance.
ALTEX. 2016;33(2):149-66. doi: 10.14573/altex.1601251. Epub 2016 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验