Suppr超能文献

蛋白质热力学限制与位点间进化速率变化的关系。

Relationship between protein thermodynamic constraints and variation of evolutionary rates among sites.

作者信息

Echave Julian, Jackson Eleisha L, Wilke Claus O

机构信息

Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Martín de Irigoyen 3100, 1650 San Martín, Buenos Aires, Argentina.

出版信息

Phys Biol. 2015 Mar 19;12(2):025002. doi: 10.1088/1478-3975/12/2/025002.

Abstract

Evolutionary-rate variation among sites within proteins depends on functional and biophysical properties that constrain protein evolution. It is generally accepted that proteins must be able to fold stably in order to function. However, the relationship between stability constraints and among-sites rate variation is not well understood. Here, we present a biophysical model that links the thermodynamic stability changes due to mutations at sites in proteins ([Formula: see text]) to the rate at which mutations accumulate at those sites over evolutionary time. We find that such a 'stability model' generally performs well, displaying correlations between predicted and empirically observed rates of up to 0.75 for some proteins. We further find that our model has comparable predictive power as does an alternative, recently proposed 'stress model' that explains evolutionary-rate variation among sites in terms of the excess energy needed for mutants to adopt the correct active structure ([Formula: see text]). The two models make distinct predictions, though, and for some proteins the stability model outperforms the stress model and vice versa. We conclude that both stability and stress constrain site-specific sequence evolution in proteins.

摘要

蛋白质内不同位点之间的进化速率变化取决于限制蛋白质进化的功能和生物物理特性。人们普遍认为,蛋白质必须能够稳定折叠才能发挥功能。然而,稳定性限制与位点间速率变化之间的关系尚未得到很好的理解。在这里,我们提出了一个生物物理模型,该模型将蛋白质中位点突变引起的热力学稳定性变化([公式:见原文])与这些位点在进化时间内突变积累的速率联系起来。我们发现这样一个“稳定性模型”通常表现良好,对于某些蛋白质,预测速率与经验观察速率之间的相关性高达0.75。我们进一步发现,我们的模型具有与另一种最近提出的“压力模型”相当的预测能力,该模型根据突变体采用正确活性结构所需的多余能量来解释位点间的进化速率变化([公式:见原文])。不过,这两个模型做出了不同的预测,对于某些蛋白质,稳定性模型优于压力模型,反之亦然。我们得出结论,稳定性和压力都限制了蛋白质中位点特异性的序列进化。

相似文献

1
Relationship between protein thermodynamic constraints and variation of evolutionary rates among sites.
Phys Biol. 2015 Mar 19;12(2):025002. doi: 10.1088/1478-3975/12/2/025002.
3
A thermodynamic model of protein structure evolution explains empirical amino acid substitution matrices.
Protein Sci. 2021 Oct;30(10):2057-2068. doi: 10.1002/pro.4155. Epub 2021 Jul 30.
4
A Comparison of One-Rate and Two-Rate Inference Frameworks for Site-Specific dN/dS Estimation.
Genetics. 2016 Oct;204(2):499-511. doi: 10.1534/genetics.115.185264. Epub 2016 Aug 17.
7
Improved prediction of site-rates from structure with averaging across homologs.
Protein Sci. 2024 Jul;33(7):e5086. doi: 10.1002/pro.5086.
8
Atomistic simulation of protein evolution reveals sequence covariation and time-dependent fluctuations of site-specific substitution rates.
PLoS Comput Biol. 2023 Mar 24;19(3):e1010262. doi: 10.1371/journal.pcbi.1010262. eCollection 2023 Mar.
9
10
Evolution of Amino Acid Propensities under Stability-Mediated Epistasis.
Mol Biol Evol. 2022 Mar 2;39(3). doi: 10.1093/molbev/msac030.

引用本文的文献

1
Improved prediction of site-rates from structure with averaging across homologs.
Protein Sci. 2024 Jul;33(7):e5086. doi: 10.1002/pro.5086.
2
A mutational atlas for Parkin proteostasis.
Nat Commun. 2024 Feb 20;15(1):1541. doi: 10.1038/s41467-024-45829-4.
3
Atomistic simulation of protein evolution reveals sequence covariation and time-dependent fluctuations of site-specific substitution rates.
PLoS Comput Biol. 2023 Mar 24;19(3):e1010262. doi: 10.1371/journal.pcbi.1010262. eCollection 2023 Mar.
4
Secretory quality control constrains functional selection-associated protein structure innovation.
Commun Biol. 2022 Mar 25;5(1):268. doi: 10.1038/s42003-022-03220-3.
5
Evolution of Amino Acid Propensities under Stability-Mediated Epistasis.
Mol Biol Evol. 2022 Mar 2;39(3). doi: 10.1093/molbev/msac030.
6
Evolutionary coupling range varies widely among enzymes depending on selection pressure.
Biophys J. 2021 Oct 19;120(20):4320-4324. doi: 10.1016/j.bpj.2021.08.042. Epub 2021 Sep 2.
7
The variation among sites of protein structure divergence is shaped by mutation and scaled by selection.
Curr Res Struct Biol. 2020 Aug 26;2:156-163. doi: 10.1016/j.crstbi.2020.08.002. eCollection 2020.
9
Abundance Imparts Evolutionary Constraints of Similar Magnitude on the Buried, Surface, and Disordered Regions of Proteins.
Front Mol Biosci. 2021 Apr 30;8:626729. doi: 10.3389/fmolb.2021.626729. eCollection 2021.
10
Site-Specific Amino Acid Distributions Follow a Universal Shape.
J Mol Evol. 2020 Dec;88(10):731-741. doi: 10.1007/s00239-020-09976-8. Epub 2020 Nov 24.

本文引用的文献

1
Predicting evolutionary site variability from structure in viral proteins: buriedness, packing, flexibility, and design.
J Mol Evol. 2014 Oct;79(3-4):130-42. doi: 10.1007/s00239-014-9644-x. Epub 2014 Sep 13.
2
Local packing density is the main structural determinant of the rate of protein sequence evolution at site level.
Biomed Res Int. 2014;2014:572409. doi: 10.1155/2014/572409. Epub 2014 Jul 9.
4
RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.
Bioinformatics. 2014 May 1;30(9):1312-3. doi: 10.1093/bioinformatics/btu033. Epub 2014 Jan 21.
5
Mutational effects on stability are largely conserved during protein evolution.
Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):21071-6. doi: 10.1073/pnas.1314781111. Epub 2013 Dec 9.
7
Protein evolution along phylogenetic histories under structurally constrained substitution models.
Bioinformatics. 2013 Dec 1;29(23):3020-8. doi: 10.1093/bioinformatics/btt530. Epub 2013 Sep 12.
8
Stability-mediated epistasis constrains the evolution of an influenza protein.
Elife. 2013 May 14;2:e00631. doi: 10.7554/eLife.00631.
9
MAFFT multiple sequence alignment software version 7: improvements in performance and usability.
Mol Biol Evol. 2013 Apr;30(4):772-80. doi: 10.1093/molbev/mst010. Epub 2013 Jan 16.
10
Assessing predictors of changes in protein stability upon mutation using self-consistency.
PLoS One. 2012;7(10):e46084. doi: 10.1371/journal.pone.0046084. Epub 2012 Oct 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验