Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín (UNSAM), Buenos Aires, Argentina.
Mol Biol Evol. 2019 Mar 1;36(3):613-620. doi: 10.1093/molbev/msy244.
The rate of evolution varies among sites within proteins. In enzymes, two rate gradients are observed: rate decreases with increasing local packing and it increases with increasing distance from catalytic residues. The rate-packing gradient would be mainly due to stability constraints and is well reproduced by biophysical models with selection for protein stability. However, stability constraints are unlikely to account for the rate-distance gradient. Here, to explore the mechanistic underpinnings of the rate gradients observed in enzymes, I propose a stability-activity model of enzyme evolution, MSA. This model is based on a two-dimensional fitness function that depends on stability, quantified by ΔG, the enzyme's folding free energy, and activity, quantified by ΔG*, the activation energy barrier of the enzymatic reaction. I test MSA on a diverse data set of enzymes, comparing it with two simpler models: MS, which depends only on ΔG, and MA, which depends only on ΔG*. I found that MSA clearly outperforms both MS and MA and it accounts for both the rate-packing and rate-distance gradients. Thus, MSA captures the distribution of stability and activity constraints within enzymes, explaining the resulting patterns of rate variation among sites.
蛋白质内部的各部位进化速度存在差异。在酶中,存在两种速率梯度:局部包装程度增加会导致速率降低,而与催化残基的距离增加则会导致速率升高。速率-包装梯度主要归因于稳定性约束,并且通过针对蛋白质稳定性进行选择的生物物理模型可以很好地再现。然而,稳定性约束不太可能解释速率-距离梯度的原因。在这里,为了探究酶中观察到的速率梯度的机制基础,我提出了一种酶进化的稳定性-活性模型(MSA)。该模型基于二维适应度函数,该函数取决于稳定性,由 ΔG 量化,ΔG 是酶的折叠自由能,以及活性,由 ΔG量化,酶反应的活化能势垒。我在一个多样化的酶数据集上对 MSA 进行了测试,将其与两个更简单的模型进行了比较:仅取决于 ΔG 的 MS 模型和仅取决于 ΔG的 MA 模型。我发现,MSA 明显优于 MS 和 MA 模型,并且能够解释速率在各部位之间的变化模式,包括速率-包装梯度和速率-距离梯度。因此,MSA 捕捉到了酶内部稳定性和活性约束的分布情况,解释了由此产生的速率变化模式。