Reiner-Rozman Ciril, Larisika Melanie, Nowak Christoph, Knoll Wolfgang
Center for Electrochemical Surface Technology (CEST), Viktor-Kaplan Strasse 2, 2700 Wiener Neustadt, Austria.
AIT Austrian Institute of Technology, Donau City Strasse 1, 1220 Vienna, Austria.
Biosens Bioelectron. 2015 Aug 15;70:21-7. doi: 10.1016/j.bios.2015.03.013. Epub 2015 Mar 9.
We present an experimental and theoretical characterization for reduced Graphene-Oxide (rGO) based FETs used for biosensing applications. The presented approach shows a complete result analysis and theoretically predictable electrical properties. The formulation was tested for the analysis of the device performance in the liquid gate mode of operation with variation of the ionic strength and pH-values of the electrolytes in contact with the FET. The dependence on the Debye length was confirmed experimentally and theoretically, utilizing the Debye length as a working parameter and thus defining the limits of applicability for the presented rGO-FETs. Furthermore, the FETs were tested for the sensing of biomolecules (bovine serum albumin (BSA) as reference) binding to gate-immobilized anti-BSA antibodies and analyzed using the Langmuir binding theory for the description of the equilibrium surface coverage as a function of the bulk (analyte) concentration. The obtained binding coefficients for BSA are found to be same as in results from literature, hence confirming the applicability of the devices. The FETs used in the experiments were fabricated using wet-chemically synthesized graphene, displaying high electron and hole mobility (µ) and provide the strong sensitivity also for low potential changes (by change of pH, ion concentration, or molecule adsorption). The binding coefficient for BSA-anti-BSA interaction shows a behavior corresponding to the Langmuir adsorption theory with a Limit of Detection (LOD) in the picomolar concentration range. The presented approach shows high reproducibility and sensitivity and a good agreement of the experimental results with the calculated data.
我们展示了用于生物传感应用的基于还原氧化石墨烯(rGO)的场效应晶体管(FET)的实验和理论特性。所提出的方法展示了完整的结果分析以及理论上可预测的电学性质。该公式针对在液体栅极操作模式下器件性能的分析进行了测试,其中与FET接触的电解质的离子强度和pH值有所变化。通过将德拜长度用作工作参数,从实验和理论上证实了对德拜长度的依赖性,从而确定了所提出的rGO - FET的适用范围。此外,对FET进行了测试,以检测与栅极固定的抗牛血清白蛋白(BSA)抗体结合的生物分子(以牛血清白蛋白(BSA)作为参考),并使用朗缪尔结合理论进行分析,以描述平衡表面覆盖率作为本体(分析物)浓度的函数。发现获得的BSA结合系数与文献结果相同,从而证实了这些器件的适用性。实验中使用的FET是通过湿化学合成的石墨烯制造的,具有高电子和空穴迁移率(µ),并且对低电位变化(通过pH、离子浓度或分子吸附的变化)也具有很强的灵敏度。BSA - 抗BSA相互作用的结合系数显示出与朗缪尔吸附理论相符的行为,检测限(LOD)在皮摩尔浓度范围内。所提出的方法显示出高重现性和灵敏度,并且实验结果与计算数据具有良好的一致性。