Suppr超能文献

用于智能农业的液栅石墨烯场效应晶体管气体传感器的工艺开发

Process Development of a Liquid-Gated Graphene Field-Effect Transistor Gas Sensor for Applications in Smart Agriculture.

作者信息

Lu Jian, Shiraishi Naoki, Imaizumi Ryo, Zhang Lan, Kimura Mutsumi

机构信息

National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba 305-8564, Ibaraki, Japan.

National Agriculture and Food Research Organization (NARO), 3-1-1 Kannondai, Tsukuba 305-8517, Ibaraki, Japan.

出版信息

Sensors (Basel). 2024 Oct 1;24(19):6376. doi: 10.3390/s24196376.

Abstract

A compact, multi-channel ionic liquid-gated graphene field-effect transistor (FET) has been proposed and developed in our work for on-field continuous monitoring of nitrate nitrogen and other nitrogen fertilizers to achieve sustainable and efficient farming practices in agriculture. However, fabricating graphene FETs with easy filling of ionic liquids, minimal graphene defects, and high process yields remains challenging, given the sensitivity of these devices to processing conditions and environmental factors. In this work, two approaches for the fabrication of our graphene FETs were presented, evaluated, and compared for high yields and easy filling of ionic liquids. The process difficulties, major obstacles, and improvements are discussed herein in detail. Both devices, those fabricated using a 3 μm-thick CYTOP layer for position restriction and volume control of the ionic liquid and those using a ~20 nm-thick photosensitive hydrophobic layer for the same purpose, exhibited typical FET characteristics and were applicable to various application environments. The research findings and experiences presented in this paper will provide important references to related societies for the design, fabrication, and application of liquid-gated graphene FETs.

摘要

在我们的工作中,已经提出并开发了一种紧凑的多通道离子液体门控石墨烯场效应晶体管(FET),用于现场连续监测硝酸盐氮和其他氮肥,以实现农业中的可持续高效耕作实践。然而,鉴于这些器件对加工条件和环境因素的敏感性,制造具有易于填充离子液体、最小石墨烯缺陷和高工艺产量的石墨烯FET仍然具有挑战性。在这项工作中,提出、评估并比较了两种制造我们的石墨烯FET的方法,以实现高产量和易于填充离子液体。本文详细讨论了工艺难点、主要障碍和改进措施。使用3μm厚的CYTOP层来限制离子液体的位置和控制其体积制造的器件,以及使用约20nm厚的光敏疏水层用于相同目的制造的器件,都表现出典型的FET特性,并且适用于各种应用环境。本文提出的研究结果和经验将为相关领域在液门控石墨烯FET的设计、制造和应用方面提供重要参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/942f/11479193/761e84115496/sensors-24-06376-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验