Kim Hanjun, Lee Dawit, Maldonado-Contreras Jairo Y, Zhou Sixu, Herrin Kinsey R, Young Aaron J
Hanjun Kim is with the Woodruff School of Mechanical Engineering, Georgia Tech, Atlanta, GA 30332-0405 USA.
Dawit Lee was with the Woodruff School of Mechanical Engineering, Georgia Tech, Atlanta, GA 30332-0405 USA; Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA 94305 USA.
IEEE Robot Autom Lett. 2025 Apr;10(4):3206-3213. doi: 10.1109/lra.2025.3535186. Epub 2025 Jan 27.
Traditional robotic knee-ankle prostheses categorize ambulation modes such as level walking, ramps, and stairs. However, human movement scales continuously across various states rather than discretely, making traditional mode classifiers inadequate for accurate intent recognition. This paper proposes a mode-unified intent recognition strategy that continuously estimates terrain slopes across five modes: level ground, ramp ascent/descent, and stair ascent/descent. Locomotion data from 16 individuals with transfemoral amputation were utilized to train slope estimation and mode classification models based on deep temporal convolutional networks. The proposed method was compared to the traditional mode classifier via offline test, using leave-one-subject-out validations for the user-independent performance. The mode-unified slope estimator achieved an MAE of 1.68 ± 0.60 degrees, outperforming the mode classifier's MAE of 1.94 ± 0.97 degrees (p<0.05). The lower slope estimation errors resulted in higher accuracy in replicating knee kinematics of able-bodied subjects, with the proposed system achieving an average MAE of 5.13 ± 2.00 degrees for knee clearance and 6.74 ± 2.97 degrees for knee contact angle, compared to the traditional classifier's 12.10 ± 5.20 degrees and 13.80 ± 3.28 degrees (p<0.01), respectively, in stair ascent. These results suggest that our mode-unified approach can enable continuous adjustment to terrains without mode classification.
传统的机器人膝踝假肢对诸如平地行走、斜坡行走和上楼梯等行走模式进行分类。然而,人类的运动在各种状态下是连续变化的,而不是离散的,这使得传统的模式分类器不足以进行准确的意图识别。本文提出了一种模式统一的意图识别策略,该策略可以连续估计五种模式下的地形坡度:平地、斜坡上升/下降以及楼梯上升/下降。利用16名经股截肢患者的运动数据,基于深度时间卷积网络训练坡度估计和模式分类模型。通过离线测试,将所提出的方法与传统模式分类器进行比较,并使用留一法验证来评估其独立于用户的性能。模式统一的坡度估计器的平均绝对误差(MAE)为1.68±0.60度,优于模式分类器的1.94±0.97度(p<0.05)。更低的坡度估计误差使得在复制健全受试者的膝关节运动学方面具有更高的准确性,与传统分类器在楼梯上升时分别为12.10±5.20度和13.80±3.28度相比,所提出的系统在膝关节间隙方面的平均绝对误差为5.13±2.00度,在膝关节接触角方面为6.74±2.97度(p<0.01)。这些结果表明,我们的模式统一方法能够在不进行模式分类的情况下对地形进行连续调整。