Suppr超能文献

基于 CNN 的惯性测量单元和智能下肢假肢意图识别方法。

A CNN-Based Method for Intent Recognition Using Inertial Measurement Units and Intelligent Lower Limb Prosthesis.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2019 May;27(5):1032-1042. doi: 10.1109/TNSRE.2019.2909585. Epub 2019 Apr 9.

Abstract

Powered intelligent lower limb prosthesis can actuate the knee and ankle joints, allowing transfemoral amputees to perform seamless transitions between locomotion states with the help of an intent recognition system. However, prior intent recognition studies often installed multiple sensors on the prosthesis, and they employed machine learning techniques to analyze time-series data with empirical features. We alternatively propose a novel method for training an intent recognition system that provides natural transitions between level walk, stair ascent / descent, and ramp ascent / descent. Since the transition between two neighboring states is driven by motion intent, we aim to explore the mapping between the motion state of a healthy leg and an amputee's motion intent before the upcoming transition of the prosthesis. We use inertial measurement units (IMUs) and put them on the healthy leg of lower limb amputees for monitoring its locomotion state. We analyze IMU data within the early swing phase of the healthy leg, and feed data into a convolutional neural network (CNN) to learn the feature mapping without expert participation. The proposed method can predict the motion intent of both unilateral amputees and the able-bodied, and help to adaptively calibrate the control strategy for actuating powered intelligent prosthesis in advance. The experimental results show that the recognition accuracy can reach a high level (94.15% for the able-bodied, 89.23% for amputees) on 13 classes of motion intent, containing five steady states on different terrains as well as eight transitional states among the steady states.

摘要

动力智能下肢假肢可以驱动膝关节和踝关节,借助意图识别系统,帮助股骨截肢者在运动状态之间实现无缝转换。然而,之前的意图识别研究通常在假肢上安装多个传感器,并采用机器学习技术来分析具有经验特征的时间序列数据。我们提出了一种新的方法来训练意图识别系统,该系统可以在水平行走、上下楼梯和上下斜坡之间提供自然的过渡。由于两个相邻状态之间的转换是由运动意图驱动的,因此我们旨在探索健康腿的运动状态与假肢即将过渡前的运动意图之间的映射关系。我们使用惯性测量单元(IMU)并将其放在下肢截肢者的健康腿上,以监测其运动状态。我们分析健康腿早期摆动阶段的 IMU 数据,并将数据输入卷积神经网络(CNN),在没有专家参与的情况下学习特征映射。所提出的方法可以预测单侧截肢者和健康人的运动意图,并有助于提前自适应调整动力智能假肢的控制策略。实验结果表明,该方法在 13 类运动意图(健康人识别准确率为 94.15%,截肢者为 89.23%)上具有较高的识别精度,包括不同地形上的 5 个稳态以及稳态之间的 8 个过渡态。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验