Le Duong, Cheng Shihao, Gregg Robert D, Ghaffari Maani
College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
IEEE Robot Autom Lett. 2024 May;9(5):4321-4328. doi: 10.1109/lra.2024.3379800. Epub 2024 Mar 20.
This paper presents a transfer learning method to enhance locomotion intent prediction in novel transfemoral amputee subjects, particularly in data-sparse scenarios. Transfer learning is done with three pre-trained models trained on separate datasets: transfemoral amputees, able-bodied individuals, and a mixed dataset of both groups. Each model is subsequently fine-tuned using data from a new transfemoral amputee subject. While subject-dependent models, trained and tested using individual user data, can achieve the least error rate, they require extensive training datasets. In contrast, our transfer learning approach yields comparable error rates while requiring significantly less data. This highlights the benefit of using preexisting, pre-trained features when data is scarce. As anticipated, the performance of transfer learning improves as more data from the subject is made available. We also explore the performance of the intent prediction system under various sensor configurations. We identify that a combination of a thigh inertial measurement unit and load cell offers a practical and efficient choice for sensor setup. These findings underscore the potential of transfer learning as a powerful tool for enhancing intent prediction accuracy for new transfemoral amputee subjects, even under data-limited conditions.
本文提出了一种迁移学习方法,以增强对新型经股截肢者的运动意图预测,特别是在数据稀疏的情况下。迁移学习是通过在单独的数据集上训练的三个预训练模型来完成的:经股截肢者、健全个体以及两组的混合数据集。随后,使用来自一名新的经股截肢者的数据对每个模型进行微调。虽然使用个体用户数据进行训练和测试的依赖于个体的模型能够实现最低的错误率,但它们需要大量的训练数据集。相比之下,我们的迁移学习方法在需要的数据显著减少的情况下,产生了相当的错误率。这突出了在数据稀缺时使用预先存在的、预训练特征的好处。正如预期的那样,随着来自该个体的更多数据可用,迁移学习的性能会提高。我们还探讨了意图预测系统在各种传感器配置下的性能。我们发现,大腿惯性测量单元和称重传感器的组合为传感器设置提供了一种实用且高效的选择。这些发现强调了迁移学习作为一种强大工具的潜力,即使在数据有限的条件下,也能提高对新的经股截肢者的意图预测准确性。