Suppr超能文献

生理生态学与气候变化的相遇。

Physiological ecology meets climate change.

机构信息

Departamento de Ecología, Center of Applied Ecology and Sustainability, Universidad Católica de Chile Santiago, Chile.

Alfred-Wegener-Institute Bremerhaven, Germany.

出版信息

Ecol Evol. 2015 Mar;5(5):1025-30. doi: 10.1002/ece3.1403. Epub 2015 Feb 5.

Abstract

In this article, we pointed out that understanding the physiology of differential climate change effects on organisms is one of the many urgent challenges faced in ecology and evolutionary biology. We explore how physiological ecology can contribute to a holistic view of climate change impacts on organisms and ecosystems and their evolutionary responses. We suggest that theoretical and experimental efforts not only need to improve our understanding of thermal limits to organisms, but also to consider multiple stressors both on land and in the oceans. As an example, we discuss recent efforts to understand the effects of various global change drivers on aquatic ectotherms in the field that led to the development of the concept of oxygen and capacity limited thermal tolerance (OCLTT) as a framework integrating various drivers and linking organisational levels from ecosystem to organism, tissue, cell, and molecules. We suggest seven core objectives of a comprehensive research program comprising the interplay among physiological, ecological, and evolutionary approaches for both aquatic and terrestrial organisms. While studies of individual aspects are already underway in many laboratories worldwide, integration of these findings into conceptual frameworks is needed not only within one organism group such as animals but also across organism domains such as Archaea, Bacteria, and Eukarya. Indeed, development of unifying concepts is relevant for interpreting existing and future findings in a coherent way and for projecting the future ecological and evolutionary effects of climate change on functional biodiversity. We also suggest that OCLTT may in the end and from an evolutionary point of view, be able to explain the limited thermal tolerance of metazoans when compared to other organisms.

摘要

在这篇文章中,我们指出,理解不同气候变化对生物的生理效应是生态学和进化生物学面临的众多紧迫挑战之一。我们探讨了生理生态学如何为气候变化对生物和生态系统及其进化响应的整体观点做出贡献。我们建议,理论和实验工作不仅需要提高我们对生物热极限的理解,还要考虑陆地和海洋上的多种胁迫因素。作为一个例子,我们讨论了最近在野外理解各种全球变化驱动因素对水生变温动物影响的努力,这些努力导致了氧气和能力有限的热耐受(OCLTT)概念的发展,作为一个整合各种驱动因素的框架,将从生态系统到生物、组织、细胞和分子等组织水平联系起来。我们提出了一个综合研究计划的七个核心目标,该计划包括生理、生态和进化方法的相互作用,适用于水生和陆生生物。虽然全世界许多实验室已经在研究个别方面,但需要将这些发现整合到概念框架中,不仅在动物等一个生物群中,而且在古细菌、细菌和真核生物等生物领域中。事实上,发展统一的概念对于以连贯的方式解释现有和未来的发现以及预测气候变化对功能生物多样性的未来生态和进化影响是相关的。我们还提出,从进化的角度来看,OCLTT 最终可能能够解释后生动物相对于其他生物的有限热耐受性。

相似文献

1
Physiological ecology meets climate change.
Ecol Evol. 2015 Mar;5(5):1025-30. doi: 10.1002/ece3.1403. Epub 2015 Feb 5.
2
Climate impacts on organisms, ecosystems and human societies: integrating OCLTT into a wider context.
J Exp Biol. 2021 Feb 24;224(Pt Suppl 1):jeb238360. doi: 10.1242/jeb.238360.
3
Climate sensitivity across marine domains of life: limits to evolutionary adaptation shape species interactions.
Glob Chang Biol. 2014 Oct;20(10):3059-67. doi: 10.1111/gcb.12645. Epub 2014 Jun 26.
4
Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence.
Comp Biochem Physiol A Mol Integr Physiol. 2016 Feb;192:64-78. doi: 10.1016/j.cbpa.2015.10.020. Epub 2015 Oct 24.
5
Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology.
J Exp Biol. 2017 Aug 1;220(Pt 15):2685-2696. doi: 10.1242/jeb.134585.
7
Integrating within-species variation in thermal physiology into climate change ecology.
Philos Trans R Soc Lond B Biol Sci. 2019 Aug 5;374(1778):20180550. doi: 10.1098/rstb.2018.0550. Epub 2019 Jun 17.
8
Global climate change and the evolutionary ecology of ecosystem functioning.
Ann N Y Acad Sci. 2013 Sep;1297:61-72. doi: 10.1111/nyas.12181. Epub 2013 Jul 15.
9
A mechanistic oxygen- and temperature-limited metabolic niche framework.
Philos Trans R Soc Lond B Biol Sci. 2019 Aug 5;374(1778):20180540. doi: 10.1098/rstb.2018.0540. Epub 2019 Jun 17.
10
Understanding the connectivity of ecosystems in the Anthropocene.
J Anim Ecol. 2021 Jul;90(7):1600-1604. doi: 10.1111/1365-2656.13550.

引用本文的文献

1
Unraveling the metabolic gene expression and energetic patterns of the seasonally acclimatized gilthead seabream.
Fish Physiol Biochem. 2025 May 24;51(3):102. doi: 10.1007/s10695-025-01513-y.
7
Bat responses to climate change: a systematic review.
Biol Rev Camb Philos Soc. 2023 Feb;98(1):19-33. doi: 10.1111/brv.12893. Epub 2022 Aug 21.
8
Responses and sensitivities of maize phenology to climate change from 1971 to 2020 in Henan Province, China.
PLoS One. 2022 Jan 25;17(1):e0262289. doi: 10.1371/journal.pone.0262289. eCollection 2022.
10
Hydrothermal physiology and climate vulnerability in amphibians.
Proc Biol Sci. 2021 Feb 24;288(1945):20202273. doi: 10.1098/rspb.2020.2273. Epub 2021 Feb 17.

本文引用的文献

3
Differential responses to thermal variation between fitness metrics.
Sci Rep. 2014 Jun 23;4:5349. doi: 10.1038/srep05349.
5
Climate sensitivity across marine domains of life: limits to evolutionary adaptation shape species interactions.
Glob Chang Biol. 2014 Oct;20(10):3059-67. doi: 10.1111/gcb.12645. Epub 2014 Jun 26.
6
Improved heat tolerance in air drives the recurrent evolution of air-breathing.
Proc Biol Sci. 2014 Mar 11;281(1782):20132927. doi: 10.1098/rspb.2013.2927. Print 2014 May 7.
8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验