Suppr超能文献

在芯片上用纳米磁铁构建皮质神经元极性。

Engineering cortical neuron polarity with nanomagnets on a chip.

机构信息

†Department of Bioengineering, ‡California NanoSystems Institute, and §Department of Neurobiology, University of California, Los Angeles, California 90095, United States.

出版信息

ACS Nano. 2015;9(4):3664-76. doi: 10.1021/nn505330w. Epub 2015 Apr 1.

Abstract

Intra- and extracellular signaling play critical roles in cell polarity, ultimately leading to the development of functional cell-cell connections, tissues, and organs. In the brain, pathologically oriented neurons are often the cause for disordered circuits, severely impacting motor function, perception, and memory. Aside from control through gene expression and signaling pathways, it is known that nervous system development can be manipulated by mechanical stimuli (e.g., outgrowth of axons through externally applied forces). The inverse is true as well: intracellular molecular signals can be converted into forces to yield axonal outgrowth. The complete role played by mechanical signals in mediating single-cell polarity, however, remains currently unclear. Here we employ highly parallelized nanomagnets on a chip to exert local mechanical stimuli on cortical neurons, independently of the amount of superparamagnetic nanoparticles taken up by the cells. The chip-based approach was utilized to quantify the effect of nanoparticle-mediated forces on the intracellular cytoskeleton as visualized by the distribution of the microtubule-associated protein tau. While single cortical neurons prefer to assemble tau proteins following poly-L-lysine surface cues, an optimal force range of 4.5-70 pN by the nanomagnets initiated a tau distribution opposed to the pattern cue. In larger cell clusters (groups comprising six or more cells), nanoparticle-mediated forces induced tau repositioning in an observed range of 190-270 pN, and initiation of magnetic field-directed cell displacement was observed at forces above 300 pN. Our findings lay the groundwork for high-resolution mechanical encoding of neural networks in vitro, mechanically driven cell polarization in brain tissues, and neurotherapeutic approaches using functionalized superparamagnetic nanoparticles to potentially restore disordered neural circuits.

摘要

细胞内和细胞外信号在细胞极性中起着关键作用,最终导致功能性细胞-细胞连接、组织和器官的发育。在大脑中,定向异常的神经元通常是紊乱电路的原因,严重影响运动功能、感知和记忆。除了通过基因表达和信号通路进行控制外,已知神经系统的发育可以通过机械刺激(例如,通过外部施加的力使轴突生长)来操纵。反之亦然:细胞内分子信号可以转化为力,从而产生轴突生长。然而,机械信号在介导单细胞极性方面所起的完整作用目前尚不清楚。在这里,我们在芯片上使用高度并行的纳米磁铁对皮质神经元施加局部机械刺激,而不受细胞摄取的超顺磁纳米颗粒数量的影响。该基于芯片的方法用于量化纳米颗粒介导的力对细胞内细胞骨架的影响,如微管相关蛋白 tau 的分布所示。虽然单个皮质神经元倾向于沿着多聚-L-赖氨酸表面线索组装 tau 蛋白,但纳米磁铁产生的 4.5-70 pN 的最佳力范围会引发 tau 分布与图案线索相反。在较大的细胞簇(由六个或更多细胞组成的群体)中,纳米颗粒介导的力在观察到的 190-270 pN 范围内诱导 tau 重新定位,并在力超过 300 pN 时观察到磁场定向的细胞位移的启动。我们的发现为体外神经网络的高分辨率机械编码、脑组织中的机械驱动细胞极化以及使用功能化超顺磁纳米颗粒的神经治疗方法奠定了基础,这些方法可能恢复紊乱的神经电路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验