文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用片上纳米磁力调节皮质神经元细胞内囊泡的运动。

Modulating motility of intracellular vesicles in cortical neurons with nanomagnetic forces on-chip.

机构信息

Department of Bioengineering, University of California, Los Angeles, California 90095, USA.

出版信息

Lab Chip. 2017 Feb 28;17(5):842-854. doi: 10.1039/c6lc01349j.


DOI:10.1039/c6lc01349j
PMID:28164203
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5400667/
Abstract

Vesicle transport is a major underlying mechanism of cell communication. Inhibiting vesicle transport in brain cells results in blockage of neuronal signals, even in intact neuronal networks. Modulating intracellular vesicle transport can have a huge impact on the development of new neurotherapeutic concepts, but only if we can specifically interfere with intracellular transport patterns. Here, we propose to modulate motion of intracellular lipid vesicles in rat cortical neurons based on exogenously bioconjugated and cell internalized superparamagnetic iron oxide nanoparticles (SPIONs) within microengineered magnetic gradients on-chip. Upon application of 6-126 pN on intracellular vesicles in neuronal cells, we explored how the magnetic force stimulus impacts the motion pattern of vesicles at various intracellular locations without modulating the entire cell morphology. Altering vesicle dynamics was quantified using, mean square displacement, a caging diameter and the total traveled distance. We observed a de-acceleration of intercellular vesicle motility, while applying nanomagnetic forces to cultured neurons with SPIONs, which can be explained by a decrease in motility due to opposing magnetic force direction. Ultimately, using nanomagnetic forces inside neurons may permit us to stop the mis-sorting of intracellular organelles, proteins and cell signals, which have been associated with cellular dysfunction. Furthermore, nanomagnetic force applications will allow us to wirelessly guide axons and dendrites by exogenously using permanent magnetic field gradients.

摘要

囊泡运输是细胞通讯的主要潜在机制。抑制脑细胞中的囊泡运输会导致神经元信号阻断,即使在完整的神经元网络中也是如此。调节细胞内囊泡运输可以对新的神经治疗概念的发展产生巨大影响,但前提是我们能够特异性地干扰细胞内运输模式。在这里,我们提出基于在微工程化的磁梯度芯片上的细胞内化超顺磁氧化铁纳米粒子(SPION)的外源性生物共轭物来调节大鼠皮质神经元内细胞内脂质囊泡的运动。在对神经元细胞内的细胞内囊泡施加 6-126 pN 的力时,我们探索了在不调节整个细胞形态的情况下,磁场刺激如何影响各种细胞内位置处囊泡的运动模式。使用均方根位移、笼状直径和总行进距离来量化囊泡动力学的变化。我们观察到,当用 SPION 对培养神经元施加纳米磁力时,细胞间囊泡的运动性会减速,这可以通过由于相反的磁力方向导致运动性降低来解释。最终,在神经元内使用纳米磁力可能使我们能够阻止细胞内细胞器、蛋白质和细胞信号的错误分拣,这些与细胞功能障碍有关。此外,纳米磁力的应用将使我们能够通过外部施加的永久磁场梯度无线引导轴突和树突。

相似文献

[1]
Modulating motility of intracellular vesicles in cortical neurons with nanomagnetic forces on-chip.

Lab Chip. 2017-2-28

[2]
Induction of Calcium Influx in Cortical Neural Networks by Nanomagnetic Forces.

ACS Nano. 2016-2-23

[3]
Engineering cortical neuron polarity with nanomagnets on a chip.

ACS Nano. 2015-4-1

[4]
Propofol alters vesicular transport in rat cortical neuronal cultures.

J Physiol Pharmacol. 2011-2

[5]
Single-axonal organelle analysis method reveals new protein-motor associations.

ACS Chem Neurosci. 2012-12-7

[6]
Vesicle mobility studied in cultured astrocytes.

Biochem Biophys Res Commun. 2005-4-8

[7]
Modelling transport of layered double hydroxide nanoparticles in axons and dendrites of cortical neurons.

Comput Methods Biomech Biomed Engin. 2012

[8]
Glucocorticoid affects dendritic transport of BDNF-containing vesicles.

Sci Rep. 2015-8-4

[9]
Iron oxide nanoparticles for neuronal cell applications: uptake study and magnetic manipulations.

J Nanobiotechnology. 2016-5-14

[10]
Astrocyte VAMP3 vesicles undergo Ca2+ -independent cycling and modulate glutamate transporter trafficking.

J Physiol. 2015-7-1

引用本文的文献

[1]
Macroscopic Structural Transition of Nickel Dithiolate Capsule with Uniaxial Magnetic Anisotropy in Water.

Adv Sci (Weinh). 2025-8

[2]
Multimodal Characterization of Cortical Neuron Response to Permanent Magnetic Field Induced Nanomagnetic Force Maps.

ACS Nano. 2024-12-24

[3]
Parallelized Mechanical Stimulation of Neuronal Calcium Through Cell-Internal Nanomagnetic Forces Provokes Lasting Shifts in the Network Activity State.

Small. 2025-1

[4]
Nano-pulling stimulates axon regeneration in dorsal root ganglia by inducing stabilization of axonal microtubules and activation of local translation.

Front Mol Neurosci. 2024-4-3

[5]
Axonal plasticity in response to active forces generated through magnetic nano-pulling.

Cell Rep. 2023-1-31

[6]
Mechanical Stimulation after Centrifuge-Free Nano-Electroporative Transfection Is Efficient and Maintains Long-Term T Cell Functionalities.

Small. 2021-9

[7]
Multi-curvature micropatterns unveil distinct calcium and mitochondrial dynamics in neuronal networks.

Lab Chip. 2021-3-21

[8]
Manipulation of Axonal Outgrowth via Exogenous Low Forces.

Int J Mol Sci. 2020-10-28

[9]
Low-cost calcium fluorometry for long-term nanoparticle studies in living cells.

Sci Rep. 2020-7-28

[10]
Force-Mediating Magnetic Nanoparticles to Engineer Neuronal Cell Function.

Front Neurosci. 2018-5-15

本文引用的文献

[1]
The Age of Cortical Neural Networks Affects Their Interactions with Magnetic Nanoparticles.

Small. 2016-7

[2]
Induction of Calcium Influx in Cortical Neural Networks by Nanomagnetic Forces.

ACS Nano. 2016-2-23

[3]
Tension-driven axon assembly: a possible mechanism.

Front Cell Neurosci. 2015-8-12

[4]
Magnetogenetic control of protein gradients inside living cells with high spatial and temporal resolution.

Nano Lett. 2015-4-28

[5]
Neuronal Activity and CaMKII Regulate Kinesin-Mediated Transport of Synaptic AMPARs.

Neuron. 2015-4-22

[6]
Emerging Brain Morphologies from Axonal Elongation.

Ann Biomed Eng. 2015-7

[7]
Engineering cortical neuron polarity with nanomagnets on a chip.

ACS Nano. 2015-4-1

[8]
Low piconewton towing of CNS axons against diffusing and surface-bound repellents requires the inhibition of motor protein-associated pathways.

Sci Rep. 2014-11-24

[9]
Lost after translation: missorting of Tau protein and consequences for Alzheimer disease.

Trends Neurosci. 2014-9-12

[10]
Bidirectional cargo transport: moving beyond tug of war.

Nat Rev Mol Cell Biol. 2014-8-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索