Suppr超能文献

通过细胞内纳米磁力对神经元钙进行并行机械刺激会引发网络活动状态的持久变化。

Parallelized Mechanical Stimulation of Neuronal Calcium Through Cell-Internal Nanomagnetic Forces Provokes Lasting Shifts in the Network Activity State.

作者信息

Beck Connor L, Kunze Anja

机构信息

Department of Electrical and Computer Engineering, Montana State University, Bozeman, MT, 59717, USA.

Montana Nanotechnology Facility, Montana State University, Bozeman, MT, 59717, USA.

出版信息

Small. 2025 Jan;21(1):e2406678. doi: 10.1002/smll.202406678. Epub 2024 Oct 26.

Abstract

Neurons differentiate mechanical stimuli force and rate to elicit unique functional responses, driving the need for further tools to generate various mechanical stimuli. Here, cell-internal nanomagnetic forces (iNMF) are introduced by manipulating internalized magnetic nanoparticles with an external magnetic field across cortical neuron networks in vitro. Under iNMF, cortical neurons exhibit calcium (Ca) influx, leading to modulation of activity observed through Ca event rates. Inhibiting particle uptake or altering nanoparticle exposure time reduced the neuronal response to nanomagnetic forces, exposing the requirement of nanoparticle uptake to induce the Ca response. In highly active cortical networks, iNMF robustly modulates synchronous network activity, which is lasting and repeatable. Using pharmacological blockers, it is shown that iNMF activates mechanosensitive ion channels to induce the Ca influx. Then, in contrast to transient mechanically evoked neuronal activity, iNMF activates Ca-activated potassium (K) channels to stabilize the neuronal membrane potential and induce network activity shifts. The findings reveal the potential of magnetic nanoparticle-mediated mechanical stimulation to modulate neuronal circuit dynamics, providing insights into the biophysics of neuronal computation.

摘要

神经元能够区分机械刺激的力和速率,以引发独特的功能反应,这推动了对产生各种机械刺激的更多工具的需求。在此,通过在体外跨皮质神经元网络利用外部磁场操纵内化的磁性纳米颗粒来引入细胞内纳米磁力(iNMF)。在iNMF作用下,皮质神经元表现出钙(Ca)内流,导致通过Ca事件发生率观察到的活动调制。抑制颗粒摄取或改变纳米颗粒暴露时间会降低神经元对纳米磁力的反应,揭示了纳米颗粒摄取对诱导Ca反应的必要性。在高度活跃的皮质网络中,iNMF能有力地调制同步网络活动,这种调制是持久且可重复的。使用药理学阻滞剂表明,iNMF激活机械敏感离子通道以诱导Ca内流。然后,与短暂的机械诱发神经元活动不同,iNMF激活钙激活钾(K)通道以稳定神经元膜电位并诱导网络活动变化。这些发现揭示了磁性纳米颗粒介导的机械刺激调节神经元回路动力学的潜力,为神经元计算的生物物理学提供了见解。

相似文献

4
Neurons differentiate magnitude and location of mechanical stimuli.神经元区分机械刺激的大小和位置。
Proc Natl Acad Sci U S A. 2020 Jan 14;117(2):848-856. doi: 10.1073/pnas.1909933117. Epub 2019 Dec 27.

本文引用的文献

4
Neuronal ensembles: Building blocks of neural circuits.神经元集合:神经网络的构建模块。
Neuron. 2024 Mar 20;112(6):875-892. doi: 10.1016/j.neuron.2023.12.008. Epub 2024 Jan 22.
9
Mechanics in the nervous system: From development to disease.神经系统中的力学:从发育到疾病
Neuron. 2024 Feb 7;112(3):342-361. doi: 10.1016/j.neuron.2023.10.005. Epub 2023 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验