Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
Nat Chem. 2015 Apr;7(4):328-33. doi: 10.1038/nchem.2194. Epub 2015 Mar 9.
In a typical hydrogen-producing photoelectrochemical cell (PEC), water reduction at the cathode (producing hydrogen) is accompanied by water oxidation at the anode (producing oxygen). This anode reaction is, however, not kinetically favourable. Here we investigate the possibility of utilizing solar energy for biomass conversion by performing the oxidation of 5-hydroxymethylfurfural (HMF) into 2,5-furandicarboxylic acid (FDCA) at the anode of a PEC. HMF is a key intermediate in biomass conversion, and FDCA is an important monomer for the production of numerous polymers. Using 2,2,6,6-tetramethylpiperidine-1-oxyl as a mediator, we obtained a near-quantitative yield and 100% Faradaic efficiency at ambient conditions without the use of precious-metal catalysts. This reaction is also thermodynamically and kinetically more favourable than water oxidation. Our results suggest that solar-driven biomass conversion can be a viable anode reaction that has the potential to increase both the efficiency and the utility of PECs constructed for solar-fuel production.
在典型的产氢光电化学电池(PEC)中,阴极(产生氢气)的水还原伴随着阳极(产生氧气)的水氧化。然而,这个阳极反应在动力学上并不有利。在这里,我们通过在 PEC 的阳极上将 5-羟甲基糠醛(HMF)氧化为 2,5-呋喃二甲酸(FDCA),研究了利用太阳能进行生物质转化的可能性。HMF 是生物质转化的关键中间体,FDCA 是生产众多聚合物的重要单体。使用 2,2,6,6-四甲基哌啶-1-氧自由基作为介体,我们在环境条件下获得了接近定量的产率和 100%的法拉第效率,而无需使用贵金属催化剂。这个反应在热力学和动力学上也比水氧化更有利。我们的结果表明,太阳能驱动的生物质转化可以作为一种可行的阳极反应,有可能提高为太阳能燃料生产而构建的 PEC 的效率和实用性。