Sakulaue Phongphot, Woraphutthaporn Sarinya, Ishii Takafumi, Kongpatpanich Kanokwan, Chakthranont Pongkarn, Nueangnoraj Khanin
School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University Pathum Thani 12120 Thailand
Division of Chemical Engineering, Faculty of Engineering, Rajamangala University of Technology Krungthep Bangkok 10120 Thailand.
RSC Adv. 2025 Jun 30;15(28):22202-22215. doi: 10.1039/d5ra02265g.
The electrochemical oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) offers a sustainable pathway for bio-based polyester production. While extensive studies have focused on electrocatalyst development for this reaction, the integration of the oxygen reduction reaction (ORR) with HMF oxidation (HMFOR) remains largely underexplored. This study presents a novel electrochemical system that synergistically combines ORR with HMFOR, utilizing a tea leaf-derived carbon cathode and a nickel foam anode. The carbonization temperature of tea leaf waste was systematically optimized to finely tune the microstructure, electronic properties, and chemical compositions of the carbon electrodes. The optimal temperature of 800 °C produced a metal-free carbon catalyst with high activity and selectivity for the 2-electron ORR to HO, enabling efficient gas diffusion electrode fabrication. In a membrane-free flow cell, coupling ORR with HMFOR significantly enhanced FDCA production, achieving an 82% yield at a cell voltage as low as 1 V, compared to 72% at 2.75 V under N. Interestingly, HO did not significantly enhance HMFOR, suggesting that O primarily lowers the reaction potential rather than directly contributing to oxidation. Notably, the tea leaf-derived carbon outperformed commercial Pt/C as a cathodic catalyst for HMFOR application, delivering a higher FDCA yield at similarly low cell voltages. Our reaction design concept demonstrates a sustainable and cost-effective approach to FDCA production by utilizing biomass-derived catalysts, reducing material costs and energy requirements while enhancing scalability and efficiency.
将5-羟甲基糠醛(HMF)电化学氧化为2,5-呋喃二甲酸(FDCA)为生物基聚酯生产提供了一条可持续的途径。虽然广泛的研究集中在该反应的电催化剂开发上,但氧还原反应(ORR)与HMF氧化反应(HMFOR)的整合在很大程度上仍未得到充分探索。本研究提出了一种新型电化学系统,该系统将ORR与HMFOR协同结合,采用茶叶衍生的碳阴极和泡沫镍阳极。系统地优化了茶叶废料的碳化温度,以精细调节碳电极的微观结构、电子性质和化学成分。800℃的最佳温度产生了一种对2电子ORR生成HO具有高活性和选择性的无金属碳催化剂,从而能够制造高效的气体扩散电极。在无膜流动池中,将ORR与HMFOR耦合显著提高了FDCA的产量,在低至1V的电池电压下产率达到82%,相比之下在氮气气氛下2.75V时产率为72%。有趣的是,HO并没有显著增强HMFOR,这表明O主要是降低了反应电位,而不是直接参与氧化反应。值得注意的是,作为用于HMFOR应用的阴极催化剂,茶叶衍生的碳优于商业Pt/C,在类似的低电池电压下提供了更高 的FDCA产率。我们的反应设计概念展示了一种利用生物质衍生催化剂生产FDCA的可持续且具有成本效益的方法,在提高可扩展性和效率的同时降低了材料成本和能源需求。