Suppr超能文献

改良的基于证据的玉米叶片、胚胎和胚乳基因组规模代谢模型。

Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm.

机构信息

Mathematics and Computer Science Division, Argonne National Laboratory Argonne, IL, USA ; Computation Institute, The University of Chicago Chicago, IL, USA.

Horticultural Sciences Department, University of Florida Gainesville, FL, USA ; Department of Biology, York College, City University of New York New York, NY, USA.

出版信息

Front Plant Sci. 2015 Mar 10;6:142. doi: 10.3389/fpls.2015.00142. eCollection 2015.

Abstract

There is a growing demand for genome-scale metabolic reconstructions for plants, fueled by the need to understand the metabolic basis of crop yield and by progress in genome and transcriptome sequencing. Methods are also required to enable the interpretation of plant transcriptome data to study how cellular metabolic activity varies under different growth conditions or even within different organs, tissues, and developmental stages. Such methods depend extensively on the accuracy with which genes have been mapped to the biochemical reactions in the plant metabolic pathways. Errors in these mappings lead to metabolic reconstructions with an inflated number of reactions and possible generation of unreliable metabolic phenotype predictions. Here we introduce a new evidence-based genome-scale metabolic reconstruction of maize, with significant improvements in the quality of the gene-reaction associations included within our model. We also present a new approach for applying our model to predict active metabolic genes based on transcriptome data. This method includes a minimal set of reactions associated with low expression genes to enable activity of a maximum number of reactions associated with high expression genes. We apply this method to construct an organ-specific model for the maize leaf, and tissue specific models for maize embryo and endosperm cells. We validate our models using fluxomics data for the endosperm and embryo, demonstrating an improved capacity of our models to fit the available fluxomics data. All models are publicly available via the DOE Systems Biology Knowledgebase and PlantSEED, and our new method is generally applicable for analysis transcript profiles from any plant, paving the way for further in silico studies with a wide variety of plant genomes.

摘要

人们对植物的基因组规模代谢重建的需求日益增长,这是因为需要了解作物产量的代谢基础,并且基因组和转录组测序技术也取得了进展。还需要有方法来解释植物转录组数据,以研究在不同的生长条件下甚至在不同的器官、组织和发育阶段,细胞代谢活性如何变化。这些方法在很大程度上取决于基因与植物代谢途径中生化反应的映射准确性。这些映射中的错误会导致代谢重建的反应数量增加,并可能产生不可靠的代谢表型预测。在这里,我们引入了一个新的基于证据的玉米基因组规模代谢重建,在模型中包含的基因-反应关联的质量有了显著提高。我们还提出了一种新的方法,可根据转录组数据应用我们的模型来预测活跃的代谢基因。该方法包括一组与低表达基因相关的最小反应,以能够使与高表达基因相关的最大数量的反应活跃。我们将此方法应用于构建玉米叶片的器官特异性模型以及玉米胚和胚乳细胞的组织特异性模型。我们使用胚乳和胚的通量组学数据验证了我们的模型,证明了我们的模型能够更好地拟合可用的通量组学数据。所有模型均可通过 DOE 系统生物学知识库和 PlantSEED 公开获得,并且我们的新方法通常适用于分析任何植物的转录谱,为使用各种植物基因组进行进一步的计算机研究铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验