Suppr超能文献

整合基因组规模建模和转录谱分析揭示了拟南芥光和温度驯化的代谢途径。

Integration of genome-scale modeling and transcript profiling reveals metabolic pathways underlying light and temperature acclimation in Arabidopsis.

机构信息

Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany.

出版信息

Plant Cell. 2013 Apr;25(4):1197-211. doi: 10.1105/tpc.112.108852. Epub 2013 Apr 23.

Abstract

Understanding metabolic acclimation of plants to challenging environmental conditions is essential for dissecting the role of metabolic pathways in growth and survival. As stresses involve simultaneous physiological alterations across all levels of cellular organization, a comprehensive characterization of the role of metabolic pathways in acclimation necessitates integration of genome-scale models with high-throughput data. Here, we present an integrative optimization-based approach, which, by coupling a plant metabolic network model and transcriptomics data, can predict the metabolic pathways affected in a single, carefully controlled experiment. Moreover, we propose three optimization-based indices that characterize different aspects of metabolic pathway behavior in the context of the entire metabolic network. We demonstrate that the proposed approach and indices facilitate quantitative comparisons and characterization of the plant metabolic response under eight different light and/or temperature conditions. The predictions of the metabolic functions involved in metabolic acclimation of Arabidopsis thaliana to the changing conditions are in line with experimental evidence and result in a hypothesis about the role of homocysteine-to-Cys interconversion and Asn biosynthesis. The approach can also be used to reveal the role of particular metabolic pathways in other scenarios, while taking into consideration the entirety of characterized plant metabolism.

摘要

理解植物对挑战性环境条件的代谢适应对于剖析代谢途径在生长和存活中的作用至关重要。由于应激涉及细胞组织所有层次的同时生理变化,因此全面描述代谢途径在适应中的作用需要将基因组规模的模型与高通量数据相结合。在这里,我们提出了一种基于综合优化的方法,该方法通过耦合植物代谢网络模型和转录组学数据,可以预测在单个精心控制的实验中受影响的代谢途径。此外,我们提出了三个基于优化的指标,这些指标可以在整个代谢网络的背景下描述代谢途径行为的不同方面。我们证明,所提出的方法和指标可以促进在八种不同的光照和/或温度条件下对拟南芥代谢适应的代谢反应进行定量比较和表征。对拟南芥适应变化条件的代谢适应中涉及的代谢功能的预测与实验证据一致,并提出了关于同型半胱氨酸到 Cys 转化和 Asn 生物合成作用的假设。该方法还可以用于在考虑到已鉴定的植物代谢全貌的情况下,揭示特定代谢途径在其他情况下的作用。

相似文献

3
Core genome responses involved in acclimation to high temperature.参与适应高温的核心基因组反应。
Plant Physiol. 2008 Feb;146(2):748-61. doi: 10.1104/pp.107.112060. Epub 2007 Nov 30.

引用本文的文献

2
A diel multi-tissue genome-scale metabolic model of Vitis vinifera.葡萄属的昼夜多组织基因组规模代谢模型。
PLoS Comput Biol. 2024 Oct 10;20(10):e1012506. doi: 10.1371/journal.pcbi.1012506. eCollection 2024 Oct.
5
Exploring synergies between plant metabolic modelling and machine learning.探索植物代谢建模与机器学习之间的协同作用。
Comput Struct Biotechnol J. 2022 Apr 16;20:1885-1900. doi: 10.1016/j.csbj.2022.04.016. eCollection 2022.
7
Environment-coupled models of leaf metabolism.叶片代谢的环境耦合模型。
Biochem Soc Trans. 2021 Feb 26;49(1):119-129. doi: 10.1042/BST20200059.

本文引用的文献

6
Flux-balance modeling of plant metabolism.植物代谢的通量平衡建模。
Front Plant Sci. 2011 Aug 11;2:38. doi: 10.3389/fpls.2011.00038. eCollection 2011.
7
Multidimensional optimality of microbial metabolism.微生物代谢的多维最优性。
Science. 2012 May 4;336(6081):601-4. doi: 10.1126/science.1216882.
8
What can causal networks tell us about metabolic pathways?因果网络能告诉我们关于代谢途径的什么信息?
PLoS Comput Biol. 2012;8(4):e1002458. doi: 10.1371/journal.pcbi.1002458. Epub 2012 Apr 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验