Guo Jiqing, Cheng Yen May, Lees-Miller James P, Perissinotti Laura L, Claydon Tom W, Hull Christina M, Thouta Samrat, Roach Daniel E, Durdagi Serdar, Noskov Sergei Y, Duff Henry J
Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada.
Department of Biomedical Physiology and Kinesiology, Molecular Cardiac Physiology Group, Simon Fraser University, Burnaby, British Columbia, Canada.
Biophys J. 2015 Mar 24;108(6):1400-1413. doi: 10.1016/j.bpj.2014.12.055.
Activators of hERG1 such as NS1643 are being developed for congenital/acquired long QT syndrome. Previous studies identify the neighborhood of L529 around the voltage-sensor as a putative interacting site for NS1643. With NS1643, the V1/2 of activation of L529I (-34 ± 4 mV) is similar to wild-type (WT) (-37 ± 3 mV; P > 0.05). WT and L529I showed no difference in the slope factor in the absence of NS1643 (8 ± 0 vs. 9 ± 0) but showed a difference in the presence of NS1643 (9 ± 0.3 vs. 22 ± 1; P < 0.01). Voltage-clamp-fluorimetry studies also indicated that in L529I, NS1643 reduces the voltage-sensitivity of S4 movement. To further assess mechanism of NS1643 action, mutations were made in this neighborhood. NS1643 shifts the V1/2 of activation of both K525C and K525C/L529I to hyperpolarized potentials (-131 ± 4 mV for K525C and -120 ± 21 mV for K525C/L529I). Both K525C and K525C/K529I had similar slope factors in the absence of NS1643 (18 ± 2 vs. 34 ± 5, respectively) but with NS1643, the slope factor of K525C/L529I increased from 34 ± 5 to 71 ± 10 (P < 0.01) whereas for K525C the slope factor did not change (18 ± 2 at baseline and 16 ± 2 for NS1643). At baseline, K525R had a slope factor similar to WT (9 vs. 8) but in the presence of NS1643, the slope factor of K525R was increased to 24 ± 4 vs. 9 ± 0 mV for WT (P < 0.01). Molecular modeling indicates that L529I induces a kink in the S4 voltage-sensor helix, altering a salt-bridge involving K525. Moreover, docking studies indicate that NS1643 binds to the kinked structure induced by the mutation with a higher affinity. Combining biophysical, computational, and electrophysiological evidence, a mechanistic principle governing the action of some activators of hERG1 channels is proposed.
诸如NS1643这类人醚-a- go-相关基因1(hERG1)的激活剂正在被开发用于治疗先天性/后天性长QT综合征。先前的研究确定电压感受器周围的L529区域是NS1643的一个假定相互作用位点。对于L529I,使用NS1643时激活的半数电压(V1/2)为-34±4mV,与野生型(WT)的-37±3mV相似(P>0.05)。在不存在NS1643的情况下,WT和L529I的斜率因子没有差异(8±0对9±0),但在存在NS1643的情况下则有差异(9±0.3对22±1;P<0.01)。电压钳荧光测定研究还表明,在L529I中,NS1643降低了S4运动的电压敏感性。为了进一步评估NS1643的作用机制,在该区域进行了突变。NS1643将K525C和K525C/L529I激活的V1/2都转移到超极化电位(K525C为-131±4mV,K525C/L529I为-120±21mV)。在不存在NS1643的情况下,K525C和K525C/K529I的斜率因子相似(分别为18±2和34±5),但使用NS1643时,K525C/L529I的斜率因子从34±5增加到71±10(P<0.01),而K525C的斜率因子没有变化(基线时为18±2,使用NS1643时为16±2)。在基线时,K525R的斜率因子与WT相似(9对8),但在存在NS1643的情况下,K525R的斜率因子增加到24±4,而WT为9±0mV(P<0.01)。分子建模表明,L529I在S4电压感受器螺旋中诱导了一个扭结,改变了涉及K525的盐桥。此外,对接研究表明,NS1643以更高的亲和力与由突变诱导的扭结结构结合。综合生物物理、计算和电生理证据,提出了一个控制hERG1通道某些激活剂作用的机制原理。