Depping Reinhard, Jelkmann Wolfgang, Kosyna Friederike Katharina
Institute of Physiology, Centre for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany,
J Mol Med (Berl). 2015 Jun;93(6):599-608. doi: 10.1007/s00109-015-1276-0. Epub 2015 Mar 27.
In order to pass through the nuclear pore complex, proteins larger than ∼40 kDa require specific nuclear transport receptors. Defects in nuclear-cytoplasmatic transport affect fundamental processes such as development, inflammation and oxygen sensing. The transcriptional response to O2 deficiency is controlled by hypoxia-inducible factors (HIFs). These are heterodimeric transcription factors of each ∼100-120 kDa proteins, consisting of one out of three different O2-labile α subunits (primarily HIF-1α) and a more constitutive 1β subunit. In the presence of O2, the α subunits are hydroxylated by specific prolyl-4-hydroxylase domain proteins (PHD1, PHD2, and PHD3) and an asparaginyl hydroxylase (factor inhibiting HIF-1, FIH-1). The prolyl hydroxylation causes recognition by von Hippel-Lindau tumor suppressor protein (pVHL), ubiquitination, and proteasomal degradation. The activity of the oxygen sensing machinery depends on dynamic intracellular trafficking. Nuclear import of HIF-1α and HIF-1β is mainly mediated by importins α and β (α/β). HIF-1α can shuttle between nucleus and cytoplasm, while HIF-1β is permanently inside the nucleus. pVHL is localized to both compartments. Nuclear import of PHD1 relies on a nuclear localization signal (NLS) and uses the classical import pathway involving importin α/β receptors. PHD2 shows an atypical NLS, and its nuclear import does not occur via the classical pathway. PHD2-mediated hydroxylation of HIF-1α occurs predominantly in the cell nucleus. Nuclear export of PHD2 involves a nuclear export signal (NES) in the N-terminus and depends on the export receptor chromosome region maintenance 1 (CRM1). Nuclear import of PHD3 is mediated by importin α/β receptors and depends on a non-classical NLS. Specific modification of the nuclear translocation of the three PHD isoforms could provide a promising strategy for the development of new therapeutic substances to tackle major diseases.
为了穿过核孔复合体,分子量大于40 kDa的蛋白质需要特定的核转运受体。核质运输缺陷会影响发育、炎症和氧感应等基本过程。对缺氧的转录反应由缺氧诱导因子(HIFs)控制。这些是由每种约100 - 120 kDa蛋白质组成的异二聚体转录因子,由三种不同的氧不稳定α亚基(主要是HIF-1α)中的一种和一个更具组成性的1β亚基组成。在有氧条件下,α亚基被特定的脯氨酰-4-羟化酶结构域蛋白(PHD1、PHD2和PHD3)和天冬酰胺酰羟化酶(缺氧诱导因子-1抑制因子,FIH-1)羟化。脯氨酰羟化导致被冯·希佩尔-林道肿瘤抑制蛋白(pVHL)识别、泛素化和蛋白酶体降解。氧感应机制的活性取决于动态的细胞内运输。HIF-1α和HIF-1β的核输入主要由输入蛋白α和β(α/β)介导。HIF-1α可以在细胞核和细胞质之间穿梭,而HIF-1β永久位于细胞核内。pVHL定位于两个区室。PHD1的核输入依赖于核定位信号(NLS),并使用涉及输入蛋白α/β受体的经典输入途径。PHD2显示出非典型的NLS,其核输入不通过经典途径发生。PHD2介导的HIF-1α羟化主要发生在细胞核中。PHD2的核输出涉及N端的核输出信号(NES),并依赖于输出受体染色体区域维护蛋白1(CRM1)。PHD3的核输入由输入蛋白α/β受体介导,并依赖于非经典的NLS。三种PHD异构体核转运的特异性修饰可能为开发治疗重大疾病的新治疗物质提供一种有前景的策略。