Optical Science and Technology Center and Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, USA.
Phys Rev Lett. 2015 Mar 13;114(10):107201. doi: 10.1103/PhysRevLett.114.107201.
Intrinsic spin Hall conductivities are calculated for strong spin-orbit Bi(1-x)Sb(x) semimetals, from the Kubo formula and using Berry curvatures evaluated throughout the Brillouin zone from a tight-binding Hamiltonian. Nearly crossing bands with strong spin-orbit interaction generate giant spin Hall conductivities in these materials, ranging from 474 (ℏ/e)(Ω cm)^{-1} for bismuth to 96 (ℏ/e)(Ω cm)^{-1} for antimony; the value for bismuth is more than twice that of platinum. The large spin Hall conductivities persist for alloy compositions corresponding to a three-dimensional topological insulator state, such as Bi(0.83)Sb(0.17). The spin Hall conductivity could be changed by a factor of 5 for doped Bi, or for Bi(0.83)Sb(0.17), by changing the chemical potential by 0.5 eV, suggesting the potential for doping or voltage tuned spin Hall current.
强自旋轨道 Bi(1-x)Sb(x)半金属的本征自旋霍尔电导率是通过 Kubo 公式并利用从紧束缚哈密顿量在整个布里渊区评估的 Berry 曲率计算得出的。具有强自旋轨道相互作用的近交叉能带在这些材料中产生了巨大的自旋霍尔电导率,范围从铋的 474 (ℏ/e)(Ω cm)^{-1}到锑的 96 (ℏ/e)(Ω cm)^{-1};铋的值是铂的两倍多。对于对应于三维拓扑绝缘体状态的合金组成,例如 Bi(0.83)Sb(0.17),自旋霍尔电导率仍然很大。对于掺杂的 Bi,或者对于 Bi(0.83)Sb(0.17),通过将化学势改变 0.5 eV,自旋霍尔电导率可以改变 5 倍,这表明有掺杂或电压调节自旋霍尔电流的潜力。