Department of Physics and Astronomy and Ames Laboratory, U.S. DOE, Iowa State University, Ames, Iowa 50011, USA.
Phys Rev Lett. 2015 Mar 13;114(10):107402. doi: 10.1103/PhysRevLett.114.107402.
Ultrafast terahertz spectroscopy accesses the dark excitonic ground state in resonantly excited (6,5) single-walled carbon nanotubes via internal, direct dipole-allowed transitions between the lowest-lying dark-bright pair state of ∼6 meV. An analytical model reproduces the response that enables the quantitative analysis of transient densities of dark excitons and e-h plasma, oscillator strength, transition energy renormalization, and dynamics. Nonequilibrium, yet stable, quasi-one-dimensional quantum states with dark excitonic correlations rapidly emerge even with increasing off-resonance photoexcitation and experience a unique crossover to complex phase-space filling of both dark and bright pair states, different from dense two- and three-dimensional excitons influenced by the thermalization, cooling, and ionization to free carriers.
超快太赫兹光谱学通过在最低的暗-亮对态(约 6 meV)之间的内部、直接偶极允许跃迁,来探测共振激发的(6,5)单壁碳纳米管中的暗激子基态。一个解析模型再现了响应,从而能够对暗激子和 e-h 等离子体、振子强度、跃迁能量重整化和动力学的瞬态密度进行定量分析。即使在增加离共振光激发的情况下,非平衡但稳定的准一维量子态也会迅速出现,并经历独特的交叉,从而使暗激子相关的态和亮对态的复杂相空间填充,与由热化、冷却和离化到自由载流子的影响的密集的二维和三维激子不同。