Suppr超能文献

益生菌鼠李糖乳杆菌GG中的L-岩藻糖操纵子参与对胃肠道环境的适应。

An L-Fucose Operon in the Probiotic Lactobacillus rhamnosus GG Is Involved in Adaptation to Gastrointestinal Conditions.

作者信息

Becerra Jimmy E, Yebra María J, Monedero Vicente

机构信息

Laboratory of Lactic Acid Bacteria and Probiotics, Biotechnology Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain.

Laboratory of Lactic Acid Bacteria and Probiotics, Biotechnology Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Valencia, Spain

出版信息

Appl Environ Microbiol. 2015 Jun;81(11):3880-8. doi: 10.1128/AEM.00260-15. Epub 2015 Mar 27.

Abstract

L-Fucose is a sugar present in human secretions as part of human milk oligosaccharides, mucins, and other glycoconjugates in the intestinal epithelium. The genome of the probiotic Lactobacillus rhamnosus GG (LGG) carries a gene cluster encoding a putative L-fucose permease (fucP), L-fucose catabolic pathway (fucI, fucK, fucU, and fucA), and a transcriptional regulator (fucR). The metabolism of L-fucose in LGG results in 1,2-propanediol production, and their fucI and fucP mutants displayed a severe and mild growth defect on L-fucose, respectively. Transcriptional analysis revealed that the fuc genes are induced by L-fucose and subject to a strong carbon catabolite repression effect. This induction was triggered by FucR, which acted as a transcriptional activator necessary for growth on L-fucose. LGG utilized fucosyl-α1,3-N-acetylglucosamine and contrarily to other lactobacilli, the presence of fuc genes allowed this strain to use the L-fucose moiety. In fucI and fucR mutants, but not in fucP mutant, L-fucose was not metabolized and it was excreted to the medium during growth on fucosyl-α1,3-N-acetylglucosamine. The fuc genes were induced by this fucosyl-disaccharide in the wild type and the fucP mutant but not in a fucI mutant, showing that FucP does not participate in the regulation of fuc genes and that L-fucose metabolism is needed for FucR activation. The l-fucose operon characterized here constitutes a new example of the many factors found in LGG that allow this strain to adapt to the gastrointestinal conditions.

摘要

L-岩藻糖是一种存在于人体分泌物中的糖类,是母乳中低聚糖、粘蛋白以及肠道上皮细胞中其他糖缀合物的组成部分。益生菌鼠李糖乳杆菌GG(LGG)的基因组携带一个基因簇,该基因簇编码一种假定的L-岩藻糖通透酶(fucP)、L-岩藻糖分解代谢途径(fucI、fucK、fucU和fucA)以及一个转录调节因子(fucR)。LGG中L-岩藻糖的代谢导致1,2-丙二醇的产生,其fucI和fucP突变体在L-岩藻糖上分别表现出严重和轻微的生长缺陷。转录分析表明,fuc基因由L-岩藻糖诱导,并受到强烈的碳分解代谢物阻遏效应的影响。这种诱导是由FucR触发的,FucR作为在L-岩藻糖上生长所必需的转录激活因子。LGG利用岩藻糖基-α1,3-N-乙酰葡糖胺,与其他乳酸杆菌不同,fuc基因的存在使该菌株能够利用L-岩藻糖部分。在fucI和fucR突变体中,但在fucP突变体中则不然,L-岩藻糖在以岩藻糖基-α1,3-N-乙酰葡糖胺为生长底物时不被代谢,并被排泄到培养基中。野生型和fucP突变体中的fuc基因由这种岩藻糖基二糖诱导,但在fucI突变体中则不然,这表明FucP不参与fuc基因的调控,并且L-岩藻糖代谢是FucR激活所必需的。这里表征的L-岩藻糖操纵子构成了LGG中发现的许多使该菌株适应胃肠道环境的因素的一个新例子。

相似文献

1
An L-Fucose Operon in the Probiotic Lactobacillus rhamnosus GG Is Involved in Adaptation to Gastrointestinal Conditions.
Appl Environ Microbiol. 2015 Jun;81(11):3880-8. doi: 10.1128/AEM.00260-15. Epub 2015 Mar 27.
3
A mutant crp allele that differentially activates the operons of the fuc regulon in Escherichia coli.
J Bacteriol. 1988 May;170(5):2352-8. doi: 10.1128/jb.170.5.2352-2358.1988.
4
Lactobacillus casei ferments the N-Acetylglucosamine moiety of fucosyl-α-1,3-N-acetylglucosamine and excretes L-fucose.
Appl Environ Microbiol. 2012 Jul;78(13):4613-9. doi: 10.1128/AEM.00474-12. Epub 2012 Apr 27.
8
Characterization of MabA, a modulator of Lactobacillus rhamnosus GG adhesion and biofilm formation.
FEMS Immunol Med Microbiol. 2010 Aug;59(3):386-98. doi: 10.1111/j.1574-695X.2010.00680.x. Epub 2010 Apr 9.
10
Generation of Lactose- and Protease-Positive Probiotic GG by Conjugation with NCDO 712.
Appl Environ Microbiol. 2021 Feb 26;87(6). doi: 10.1128/AEM.02957-20.

引用本文的文献

5
Investigation on L-rhamnose metabolism of subsp. DSM 20001 and its propionate-containing fermentates.
Appl Environ Microbiol. 2025 Jan 31;91(1):e0161324. doi: 10.1128/aem.01613-24. Epub 2024 Dec 18.
6
Genomic analysis and functional properties of GJ231 isolated from healthy beagles.
Front Microbiol. 2024 Sep 17;15:1437036. doi: 10.3389/fmicb.2024.1437036. eCollection 2024.
10
Microbiome Engineering Using Probiotic Yeast: and the Secreted Human Lysozyme Lead to Changes in the Gut Microbiome and Metabolome of Mice.
Microbiol Spectr. 2023 Aug 17;11(4):e0078023. doi: 10.1128/spectrum.00780-23. Epub 2023 Jul 12.

本文引用的文献

4
Structural and functional analysis of fucose-processing enzymes from Streptococcus pneumoniae.
J Mol Biol. 2014 Apr 3;426(7):1469-82. doi: 10.1016/j.jmb.2013.12.006. Epub 2013 Dec 12.
5
Genetically dictated change in host mucus carbohydrate landscape exerts a diet-dependent effect on the gut microbiota.
Proc Natl Acad Sci U S A. 2013 Oct 15;110(42):17059-64. doi: 10.1073/pnas.1306070110. Epub 2013 Sep 23.
6
Comparative genomic and functional analysis of 100 Lactobacillus rhamnosus strains and their comparison with strain GG.
PLoS Genet. 2013;9(8):e1003683. doi: 10.1371/journal.pgen.1003683. Epub 2013 Aug 15.
7
Malic enzyme and malolactic enzyme pathways are functionally linked but independently regulated in Lactobacillus casei BL23.
Appl Environ Microbiol. 2013 Sep;79(18):5509-18. doi: 10.1128/AEM.01177-13. Epub 2013 Jul 8.
8
Genome instability in Lactobacillus rhamnosus GG.
Appl Environ Microbiol. 2013 Apr;79(7):2233-9. doi: 10.1128/AEM.03566-12. Epub 2013 Jan 25.
9
Fucose sensing regulates bacterial intestinal colonization.
Nature. 2012 Dec 6;492(7427):113-7. doi: 10.1038/nature11623. Epub 2012 Nov 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验