Barmparis Georgios D, Lodziana Zbigniew, Lopez Nuria, Remediakis Ioannis N
Department of Materials Science and Technology, University of Crete, Heraklion, 71003, Greece ; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235, USA.
INP, Polish Acad Sci, ul. Radzikowskiego 152, PL-31342 Krakow, Poland.
Beilstein J Nanotechnol. 2015 Feb 3;6:361-8. doi: 10.3762/bjnano.6.35. eCollection 2015.
The majority of complex and advanced materials contain nanoparticles. The properties of these materials depend crucially on the size and shape of these nanoparticles. Wulff construction offers a simple method of predicting the equilibrium shape of nanoparticles given the surface energies of the material.
We review the mathematical formulation and the main applications of Wulff construction during the last two decades. We then focus to three recent extensions: active sites of metal nanoparticles for heterogeneous catalysis, ligand-protected nanoparticles generated as colloidal suspensions and nanoparticles of complex metal hydrides for hydrogen storage.
Wulff construction, in particular when linked to first-principles calculations, is a powerful tool for the analysis and prediction of the shapes of nanoparticles and tailor the properties of shape-inducing species.
大多数复杂和先进材料都包含纳米颗粒。这些材料的性质关键取决于这些纳米颗粒的尺寸和形状。给定材料的表面能,伍尔夫构造提供了一种预测纳米颗粒平衡形状的简单方法。
我们回顾了过去二十年中伍尔夫构造的数学公式和主要应用。然后我们重点关注三个近期的扩展:用于多相催化的金属纳米颗粒的活性位点、作为胶体悬浮液生成的配体保护纳米颗粒以及用于储氢的复杂金属氢化物纳米颗粒。
伍尔夫构造,特别是当与第一性原理计算相结合时,是分析和预测纳米颗粒形状以及定制形状诱导物种性质的有力工具。