Suppr超能文献

新西兰欧洲裔、毛利族和太平洋岛裔年轻女性身体脂肪分布的预测因素及风险:女性探索性研究的研究方案

Predictors and risks of body fat profiles in young New Zealand European, Māori and Pacific women: study protocol for the women's EXPLORE study.

作者信息

Kruger Rozanne, Shultz Sarah P, McNaughton Sarah A, Russell Aaron P, Firestone Ridvan T, George Lily, Beck Kathryn L, Conlon Cathryn A, von Hurst Pamela R, Breier Bernhard, Jayasinghe Shakeela N, O'Brien Wendy J, Jones Beatrix, Stonehouse Welma

机构信息

School of Food and Nutrition, Massey University, Auckland, New Zealand.

School of Sport and Exercise, Massey University, Wellington, New Zealand.

出版信息

Springerplus. 2015 Mar 14;4:128. doi: 10.1186/s40064-015-0916-8. eCollection 2015.

Abstract

BACKGROUND

Body mass index (BMI) (kg/m(2)) is used internationally to assess body mass or adiposity. However, BMI does not discriminate body fat content or distribution and may vary among ethnicities. Many women with normal BMI are considered healthy, but may have an unidentified "hidden fat" profile associated with higher metabolic disease risk. If only BMI is used to indicate healthy body size, it may fail to predict underlying risks of diseases of lifestyle among population subgroups with normal BMI and different adiposity levels or distributions. Higher body fat levels are often attributed to excessive dietary intake and/or inadequate physical activity. These environmental influences regulate genes and proteins that alter energy expenditure/storage. Micro ribonucleic acid (miRNAs) can influence these genes and proteins, are sensitive to diet and exercise and may influence the varied metabolic responses observed between individuals. The study aims are to investigate associations between different body fat profiles and metabolic disease risk; dietary and physical activity patterns as predictors of body fat profiles; and whether these risk factors are associated with the expression of microRNAs related to energy expenditure or fat storage in young New Zealand women. Given the rising prevalence of obesity globally, this research will address a unique gap of knowledge in obesity research.

METHODS/DESIGN: A cross-sectional design to investigate 675 NZ European, Māori, and Pacific women aged 16-45 years. Women are classified into three main body fat profiles (n = 225 per ethnicity; n = 75 per body fat profile): 1) normal BMI, normal body fat percentage (BF%); 2) normal BMI, high BF%; 3) high BMI, high BF%. Regional body composition, biomarkers of metabolic disease risk (i.e. fasting insulin, glucose, HbA1c, lipids), inflammation (i.e. IL-6, TNF-alpha, hs-CRP), associations between lifestyle factors (i.e. dietary intake, physical activity, taste perceptions) and microRNA expression will be investigated.

DISCUSSION

This research targets post-menarcheal, premenopausal women, potentially exhibiting lifestyle behaviours resulting in excess body fat affecting metabolic health. These behaviours may be characterised by specific patterns of microRNA expression that will be explored in terms of tailored solutions specific to body fat profile groups and ethnicities.

TRIAL REGISTRATION

ACTRN12613000714785.

摘要

背景

体重指数(BMI)(kg/m²)在国际上用于评估体重或肥胖程度。然而,BMI无法区分体脂含量或分布情况,且在不同种族间可能存在差异。许多BMI正常的女性被认为是健康的,但可能存在未被识别的“隐性脂肪”特征,与较高的代谢疾病风险相关。如果仅用BMI来指示健康的体型,可能无法预测BMI正常但体脂水平或分布不同的人群亚组中潜在的生活方式疾病风险。较高的体脂水平通常归因于饮食摄入过多和/或体力活动不足。这些环境影响会调节改变能量消耗/储存的基因和蛋白质。微小核糖核酸(miRNA)可以影响这些基因和蛋白质,对饮食和运动敏感,可能影响个体间观察到的不同代谢反应。本研究的目的是调查不同体脂特征与代谢疾病风险之间的关联;饮食和体力活动模式作为体脂特征的预测因素;以及这些风险因素是否与新西兰年轻女性中与能量消耗或脂肪储存相关的微小核糖核酸的表达有关。鉴于全球肥胖患病率不断上升,本研究将填补肥胖研究中一个独特的知识空白。

方法/设计:采用横断面设计,对675名年龄在16 - 45岁的新西兰欧洲裔、毛利裔和太平洋岛裔女性进行调查。女性被分为三种主要的体脂特征组(每个种族n = 225;每种体脂特征组n = 75):1)BMI正常,体脂百分比(BF%)正常;2)BMI正常,BF%高;3)BMI高,BF%高。将调查身体局部组成、代谢疾病风险生物标志物(即空腹胰岛素、血糖、糖化血红蛋白、血脂)、炎症(即白细胞介素 - 6、肿瘤坏死因子 - α、高敏C反应蛋白)、生活方式因素(即饮食摄入、体力活动、味觉感知)与微小核糖核酸表达之间的关联。

讨论

本研究针对初潮后、绝经前的女性,她们可能表现出导致体脂过多从而影响代谢健康的生活方式行为。这些行为可能具有特定的微小核糖核酸表达模式,将针对体脂特征组和种族的特定解决方案进行探索。

试验注册

ACTRN12613000714785。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c10/4372618/fb4e782023f4/40064_2015_916_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验