Simmons Denina B D, Benskin Jonathan P, Cosgrove John R, Duncker Bernard P, Ekman Drew R, Martyniuk Christopher J, Sherry James P
Emerging Methods Section, Aquatic Contaminants Research Division, Water Science & Technology Directorate, Environment Canada, Ontario, Canada.
Axys Analytical Services, Sidney, British Columbia, Canada.
Environ Toxicol Chem. 2015 Aug;34(8):1693-704. doi: 10.1002/etc.3002. Epub 2015 Jun 22.
There are multiple sources of biological and technical variation in a typical ecotoxicology study that may not be revealed by traditional endpoints but that become apparent in an omics dataset. As researchers increasingly apply omics technologies to environmental studies, it will be necessary to understand and control the main source(s) of variability to facilitate meaningful interpretation of such data. For instance, can variability in omics studies be addressed by changing the approach to study design and data analysis? Are there statistical methods that can be employed to correctly interpret omics data and make use of unattributed, inherent variability? The present study presents a review of experimental design and statistical considerations applicable to the use of omics methods in systems toxicology studies. In addition to highlighting potential sources that contribute to experimental variability, this review suggests strategies with which to reduce and/or control such variability so as to improve reliability, reproducibility, and ultimately the application of omics data for systems toxicology.
在典型的生态毒理学研究中,存在多种生物学和技术变异来源,这些变异可能不会通过传统终点指标显现出来,但在组学数据集中却变得明显。随着研究人员越来越多地将组学技术应用于环境研究,有必要了解并控制变异的主要来源,以便于对此类数据进行有意义的解读。例如,组学研究中的变异能否通过改变研究设计和数据分析方法来解决?是否有统计方法可用于正确解读组学数据并利用未归因的固有变异?本研究对适用于系统毒理学研究中组学方法使用的实验设计和统计考量进行了综述。除了强调导致实验变异的潜在来源外,本综述还提出了减少和/或控制此类变异的策略,以提高可靠性、可重复性,并最终将组学数据应用于系统毒理学。