Suppr超能文献

在纳米尺度上重建组织的组成、结构和功能以用于再生医学。

Recreating composition, structure, functionalities of tissues at nanoscale for regenerative medicine.

作者信息

Alarçin Emine, Guan Xiaofei, Kashaf Sara Saheb, Elbaradie Khairat, Yang Huazhe, Jang Hae Lin, Khademhosseini Ali

机构信息

Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women's Hospital, Boston, MA 02139, USA.

Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Regen Med. 2016 Dec;11(8):849-858. doi: 10.2217/rme-2016-0120. Epub 2016 Nov 25.

Abstract

Nanotechnology offers significant potential in regenerative medicine, specifically with the ability to mimic tissue architecture at the nanoscale. In this perspective, we highlight key achievements in the nanotechnology field for successfully mimicking the composition and structure of different tissues, and the development of bio-inspired nanotechnologies and functional nanomaterials to improve tissue regeneration. Numerous nanomaterials fabricated by electrospinning, nanolithography and self-assembly have been successfully applied to regenerate bone, cartilage, muscle, blood vessel, heart and bladder tissue. We also discuss nanotechnology-based regenerative medicine products in the clinic for tissue engineering applications, although so far most of them are focused on bone implants and fillers. We believe that recent advances in nanotechnologies will enable new applications for tissue regeneration in the near future.

摘要

纳米技术在再生医学领域具有巨大潜力,特别是能够在纳米尺度上模拟组织结构。从这个角度来看,我们重点介绍了纳米技术领域在成功模拟不同组织的组成和结构方面取得的关键成就,以及受生物启发的纳米技术和功能性纳米材料的发展,以促进组织再生。通过静电纺丝、纳米光刻和自组装制备的众多纳米材料已成功应用于骨、软骨、肌肉、血管、心脏和膀胱组织的再生。我们还讨论了临床上用于组织工程应用的基于纳米技术的再生医学产品,尽管到目前为止其中大多数都集中在骨植入物和填充物上。我们相信,纳米技术的最新进展将在不久的将来为组织再生带来新的应用。

相似文献

1
Recreating composition, structure, functionalities of tissues at nanoscale for regenerative medicine.
Regen Med. 2016 Dec;11(8):849-858. doi: 10.2217/rme-2016-0120. Epub 2016 Nov 25.
2
Recent advances in nano-scaffolds for tissue engineering applications: Toward natural therapeutics.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023 Nov-Dec;15(6):e1882. doi: 10.1002/wnan.1882. Epub 2023 Feb 22.
4
Two- and Three-Dimensional All-Carbon Nanomaterial Assemblies for Tissue Engineering and Regenerative Medicine.
Ann Biomed Eng. 2016 Jun;44(6):2020-35. doi: 10.1007/s10439-016-1623-5. Epub 2016 Apr 28.
5
Nano-regenerative medicine towards clinical outcome of stem cell and tissue engineering in humans.
J Cell Mol Med. 2012 Sep;16(9):1991-2000. doi: 10.1111/j.1582-4934.2012.01534.x.
6
Nanoscale surfacing for regenerative medicine.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010 Sep-Oct;2(5):478-95. doi: 10.1002/wnan.74.
7
Functionalized nanostructures with application in regenerative medicine.
Int J Mol Sci. 2012;13(3):3847-3886. doi: 10.3390/ijms13033847. Epub 2012 Mar 22.
9
Electrospun silk biomaterial scaffolds for regenerative medicine.
Adv Drug Deliv Rev. 2009 Oct 5;61(12):988-1006. doi: 10.1016/j.addr.2009.07.005. Epub 2009 Jul 28.

引用本文的文献

1
Innovative Nanotechnological Approaches in Trauma and Orthopaedic Surgery: A Comprehensive Review.
Cureus. 2024 Nov 1;16(11):e72838. doi: 10.7759/cureus.72838. eCollection 2024 Nov.
2
Engineering (Bio)Materials through Shrinkage and Expansion.
Adv Healthc Mater. 2021 Jul;10(14):e2100380. doi: 10.1002/adhm.202100380. Epub 2021 Jun 16.
3
Ca-supplying black phosphorus-based scaffolds fabricated with microfluidic technology for osteogenesis.
Bioact Mater. 2021 Apr 20;6(11):4053-4064. doi: 10.1016/j.bioactmat.2021.04.014. eCollection 2021 Nov.
4
Natural-Based Hydrogels for Tissue Engineering Applications.
Molecules. 2020 Dec 11;25(24):5858. doi: 10.3390/molecules25245858.
5
Careers in nanomedicine and drug delivery.
Adv Drug Deliv Rev. 2019 Apr;144:180-189. doi: 10.1016/j.addr.2019.06.009. Epub 2019 Jun 28.
6
Engineering vascularized and innervated bone biomaterials for improved skeletal tissue regeneration.
Mater Today (Kidlington). 2018 May;21(4):362-376. doi: 10.1016/j.mattod.2017.10.005. Epub 2017 Nov 4.
7
Mapping of the available standards against the regulatory needs for nanomedicines.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019 Jan;11(1):e1531. doi: 10.1002/wnan.1531. Epub 2018 Jun 20.

本文引用的文献

1
Chondrogenic Differentiation of Mesenchymal Stem Cells on Glycosaminoglycan-Mimetic Peptide Nanofibers.
ACS Biomater Sci Eng. 2016 May 9;2(5):871-878. doi: 10.1021/acsbiomaterials.6b00099. Epub 2016 Apr 7.
2
The bioactivity of composite Fmoc-RGDS-collagen gels.
Biomater Sci. 2014 Sep 29;2(9):1222-1229. doi: 10.1039/c4bm00121d. Epub 2014 Jun 4.
3
Vitoss Synthetic Cancellous Bone (Void Filler).
Med J Armed Forces India. 2009 Apr;65(2):173. doi: 10.1016/S0377-1237(09)80136-6. Epub 2011 Jul 21.
4
Nanowires and Electrical Stimulation Synergistically Improve Functions of hiPSC Cardiac Spheroids.
Nano Lett. 2016 Jul 13;16(7):4670-8. doi: 10.1021/acs.nanolett.6b02093. Epub 2016 Jun 23.
5
Nanofiber technology: its transformative role in nanomedicine.
Nanomedicine (Lond). 2016 Jun;11(12):1499-501. doi: 10.2217/nnm.16.44. Epub 2016 Jun 1.
6
An elastic second skin.
Nat Mater. 2016 Aug;15(8):911-8. doi: 10.1038/nmat4635. Epub 2016 May 9.
10
Defined three-dimensional microenvironments boost induction of pluripotency.
Nat Mater. 2016 Mar;15(3):344-52. doi: 10.1038/nmat4536. Epub 2016 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验