Suppr超能文献

免疫系统及免疫疗法在结直肠癌中的影响

Impact of the immune system and immunotherapy in colorectal cancer.

作者信息

Markman Janet L, Shiao Stephen L

机构信息

1 Department of Biomedical Sciences, 2 Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.

出版信息

J Gastrointest Oncol. 2015 Apr;6(2):208-23. doi: 10.3978/j.issn.2078-6891.2014.077.

Abstract

The development of cancer is a multi-step process involving the gradual loss of regulation over the growth and functional capabilities of normal cells. Much research has been focused on the numerous cell intrinsic factors that govern this process; however, recent attention has turned to understanding the cell extrinsic factors in the tumor microenvironment that appear equally critical to the progression and treatment of cancer. One critical component of the tumor microenvironment is the immune system and it has become increasingly evident that the immune system plays an integral role in preventing and promoting the development of cancer. Understanding the immune cell types and pathways involved in this process has enabled the development of novel biomarkers for prognosis and accelerated the development of immune-based therapeutics, both of which have the potential to forever change the treatment paradigms for colorectal cancer (CRC). In this review, we discuss the impact of the immune system on the initiation, progression and treatment of cancer, specifically focusing on CRC.

摘要

癌症的发展是一个多步骤过程,涉及对正常细胞生长和功能能力的调控逐渐丧失。许多研究聚焦于众多控制这一过程的细胞内在因素;然而,最近的注意力已转向了解肿瘤微环境中的细胞外在因素,这些因素似乎对癌症的进展和治疗同样至关重要。肿瘤微环境的一个关键组成部分是免疫系统,越来越明显的是,免疫系统在预防和促进癌症发展中发挥着不可或缺的作用。了解参与这一过程的免疫细胞类型和途径,已促成了用于预后的新型生物标志物的开发,并加速了基于免疫的治疗方法的发展,这两者都有可能永远改变结直肠癌(CRC)的治疗模式。在本综述中,我们讨论免疫系统对癌症起始、进展和治疗的影响,特别关注结直肠癌。

相似文献

1
Impact of the immune system and immunotherapy in colorectal cancer.
J Gastrointest Oncol. 2015 Apr;6(2):208-23. doi: 10.3978/j.issn.2078-6891.2014.077.
2
MicroRNAs: Novel immunotherapeutic targets in colorectal carcinoma.
World J Gastroenterol. 2016 Jun 21;22(23):5317-31. doi: 10.3748/wjg.v22.i23.5317.
3
Immunotherapy for colorectal cancer: where are we heading?
Expert Opin Biol Ther. 2017 Jun;17(6):709-721. doi: 10.1080/14712598.2017.1315405. Epub 2017 Apr 13.
4
Prognostic value of immune scores in the microenvironment of colorectal cancer.
Oncol Lett. 2020 Nov;20(5):256. doi: 10.3892/ol.2020.12119. Epub 2020 Sep 18.
5
Tumor immune microenvironment and nano-immunotherapeutics in colorectal cancer.
Nanomedicine. 2019 Oct;21:102034. doi: 10.1016/j.nano.2019.102034. Epub 2019 Jun 15.
6
Evolving notions on immune response in colorectal cancer and their implications for biomarker development.
Inflamm Res. 2018 May;67(5):375-389. doi: 10.1007/s00011-017-1128-1. Epub 2018 Jan 10.
7
Epigenetic and Immune Regulation of Colorectal Cancer Stem Cells.
Curr Colorectal Cancer Rep. 2015 Dec;11(6):414-421. doi: 10.1007/s11888-015-0301-6. Epub 2015 Oct 10.
8
Profiles of immune cell infiltration and immune-related genes in the tumor microenvironment of colorectal cancer.
Biomed Pharmacother. 2019 Oct;118:109228. doi: 10.1016/j.biopha.2019.109228. Epub 2019 Jul 24.

引用本文的文献

1
MAIT cell enrichment in Lynch syndrome is associated with immune surveillance and colorectal cancer risk.
Res Sq. 2025 Aug 25:rs.3.rs-7273425. doi: 10.21203/rs.3.rs-7273425/v1.
2
MAIT cell enrichment in Lynch syndrome is associated with immune surveillance and colorectal cancer risk.
bioRxiv. 2025 Aug 27:2025.08.22.671764. doi: 10.1101/2025.08.22.671764.
3
Blood-borne immune cells carry low biomass DNA remnants of microbes in patients with colorectal cancer or inflammatory bowel disease.
Gut Microbes. 2025 Dec;17(1):2530157. doi: 10.1080/19490976.2025.2530157. Epub 2025 Jul 20.
5
Effect of infection on immunotherapy for gastrointestinal cancer: a narrative review.
Immunotherapy. 2025 Apr;17(5):355-368. doi: 10.1080/1750743X.2025.2479410. Epub 2025 Mar 14.
6
Food antigens suppress small intestinal tumorigenesis.
Front Immunol. 2024 Sep 18;15:1373766. doi: 10.3389/fimmu.2024.1373766. eCollection 2024.

本文引用的文献

1
Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy.
Clin Cancer Res. 2014 Oct 1;20(19):5064-74. doi: 10.1158/1078-0432.CCR-13-3271. Epub 2014 Apr 8.
2
Adoptive transfer of MART-1 T-cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma.
Clin Cancer Res. 2014 May 1;20(9):2457-65. doi: 10.1158/1078-0432.CCR-13-3017. Epub 2014 Mar 14.
3
Host immune response to infection and cancer: unexpected commonalities.
Cell Host Microbe. 2014 Mar 12;15(3):295-305. doi: 10.1016/j.chom.2014.02.003.
4
Trial Watch: Tumor-targeting monoclonal antibodies in cancer therapy.
Oncoimmunology. 2014 Jan 1;3(1):e27048. doi: 10.4161/onci.27048.
5
Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma.
Nature. 2014 Mar 6;507(7490):109-13. doi: 10.1038/nature13111. Epub 2014 Feb 26.
6
Vaccine therapy for pancreatic cancer.
Oncoimmunology. 2013 Dec 1;2(12):e26662. doi: 10.4161/onci.26662. Epub 2013 Oct 22.
8
Dendritic cell-targeted approaches to modulate immune dysfunction in the tumor microenvironment.
Front Immunol. 2013 Dec 10;4:436. doi: 10.3389/fimmu.2013.00436.
9
Phase I trial of a recombinant yeast-CEA vaccine (GI-6207) in adults with metastatic CEA-expressing carcinoma.
Cancer Immunol Immunother. 2014 Mar;63(3):225-34. doi: 10.1007/s00262-013-1505-8. Epub 2013 Dec 7.
10
Immune cells: plastic players along colorectal cancer progression.
J Cell Mol Med. 2013 Sep;17(9):1088-95. doi: 10.1111/jcmm.12117.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验