Suppr超能文献

视网膜血管分割:一种基于视网膜皮层和局部相位的高效图割方法。

Retinal vessel segmentation: an efficient graph cut approach with retinex and local phase.

作者信息

Zhao Yitian, Liu Yonghuai, Wu Xiangqian, Harding Simon P, Zheng Yalin

机构信息

Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China.

Department of Computer Science, Aberystwyth University, Aberystwyth, United Kingdom.

出版信息

PLoS One. 2015 Apr 1;10(4):e0122332. doi: 10.1371/journal.pone.0122332. eCollection 2015.

Abstract

Our application concerns the automated detection of vessels in retinal images to improve understanding of the disease mechanism, diagnosis and treatment of retinal and a number of systemic diseases. We propose a new framework for segmenting retinal vasculatures with much improved accuracy and efficiency. The proposed framework consists of three technical components: Retinex-based image inhomogeneity correction, local phase-based vessel enhancement and graph cut-based active contour segmentation. These procedures are applied in the following order. Underpinned by the Retinex theory, the inhomogeneity correction step aims to address challenges presented by the image intensity inhomogeneities, and the relatively low contrast of thin vessels compared to the background. The local phase enhancement technique is employed to enhance vessels for its superiority in preserving the vessel edges. The graph cut-based active contour method is used for its efficiency and effectiveness in segmenting the vessels from the enhanced images using the local phase filter. We have demonstrated its performance by applying it to four public retinal image datasets (3 datasets of color fundus photography and 1 of fluorescein angiography). Statistical analysis demonstrates that each component of the framework can provide the level of performance expected. The proposed framework is compared with widely used unsupervised and supervised methods, showing that the overall framework outperforms its competitors. For example, the achieved sensitivity (0:744), specificity (0:978) and accuracy (0:953) for the DRIVE dataset are very close to those of the manual annotations obtained by the second observer.

摘要

我们的应用涉及视网膜图像中血管的自动检测,以增进对视网膜及多种全身性疾病的发病机制、诊断和治疗的理解。我们提出了一个新的框架,用于分割视网膜血管,具有更高的准确性和效率。所提出的框架由三个技术组件组成:基于视网膜皮层理论的图像不均匀性校正、基于局部相位的血管增强和基于图割的主动轮廓分割。这些步骤按以下顺序应用。在视网膜皮层理论的支撑下,不均匀性校正步骤旨在应对图像强度不均匀性以及与背景相比细血管对比度相对较低所带来的挑战。局部相位增强技术因其在保留血管边缘方面的优势而被用于增强血管。基于图割的主动轮廓方法因其在使用局部相位滤波器从增强图像中分割血管方面的效率和有效性而被采用。我们通过将其应用于四个公开的视网膜图像数据集(3个彩色眼底摄影数据集和1个荧光血管造影数据集)来展示其性能。统计分析表明,框架的每个组件都能提供预期的性能水平。所提出的框架与广泛使用的无监督和监督方法进行了比较,结果表明整体框架优于其竞争对手。例如,在DRIVE数据集上实现的灵敏度(0:744)、特异性(0:978)和准确率(0:953)与第二位观察者获得的手动标注结果非常接近。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验