Shah Syed Ayaz Ali, Tang Tong Boon, Faye Ibrahima, Laude Augustinus
Centre for Intelligent Signals and Imaging Research, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia.
National Healthcare Group Eye Institute, Department of Ophthalmology, Tan Tock Seng Hospital, Singapore, Singapore.
Graefes Arch Clin Exp Ophthalmol. 2017 Aug;255(8):1525-1533. doi: 10.1007/s00417-017-3677-y. Epub 2017 May 4.
To propose a new algorithm of blood vessel segmentation based on regional and Hessian features for image analysis in retinal abnormality diagnosis.
Firstly, color fundus images from the publicly available database DRIVE were converted from RGB to grayscale. To enhance the contrast of the dark objects (blood vessels) against the background, the dot product of the grayscale image with itself was generated. To rectify the variation in contrast, we used a 5 × 5 window filter on each pixel. Based on 5 regional features, 1 intensity feature and 2 Hessian features per scale using 9 scales, we extracted a total of 24 features. A linear minimum squared error (LMSE) classifier was trained to classify each pixel into a vessel or non-vessel pixel.
The DRIVE dataset provided 20 training and 20 test color fundus images. The proposed algorithm achieves a sensitivity of 72.05% with 94.79% accuracy.
Our proposed algorithm achieved higher accuracy (0.9206) at the peripapillary region, where the ocular manifestations in the microvasculature due to glaucoma, central retinal vein occlusion, etc. are most obvious. This supports the proposed algorithm as a strong candidate for automated vessel segmentation.
提出一种基于区域和黑塞矩阵特征的血管分割新算法,用于视网膜异常诊断中的图像分析。
首先,将公开可用数据库DRIVE中的彩色眼底图像从RGB转换为灰度图像。为了增强暗物体(血管)与背景的对比度,生成了灰度图像与其自身的点积。为了校正对比度的变化,我们在每个像素上使用了一个5×5窗口滤波器。基于5个区域特征、1个强度特征和每个尺度2个黑塞矩阵特征(使用9个尺度),我们总共提取了24个特征。训练了一个线性最小二乘误差(LMSE)分类器,将每个像素分类为血管像素或非血管像素。
DRIVE数据集提供了20幅训练彩色眼底图像和20幅测试彩色眼底图像。所提出的算法实现了72.05%的灵敏度和94.79%的准确率。
我们提出的算法在视乳头周围区域实现了更高的准确率(0.9206),在该区域,青光眼、视网膜中央静脉阻塞等引起的微脉管系统眼部表现最为明显。这支持了所提出的算法作为自动血管分割的有力候选算法。