School of Software Engineering, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, 402160, China.
Business College, Southwest University, Rongchang, Chongqing, 402460, China.
Med Biol Eng Comput. 2019 Jul;57(7):1481-1496. doi: 10.1007/s11517-019-01967-2. Epub 2019 Mar 22.
Retinal vessel automatic segmentation plays a great important role for analyzing fundus pathologies like diabetes, retinopathy, and hypertension. In this paper, a novel unsupervised method to automatically extract the vessels from fundus images is introduced. The method proposed a new vessel enhancement approach that we called revised top-bottom-hat transformation for removing the bright lesions for further enhancing vessels in a fundus image, and provides a novel feature that we call flattening of minimum circumscribed ellipse for recognizing a vessel. This method was tested on two publicly available databases DRIVE and STARE, and achieved an average accuracy of 0.9446 and 0.9503, respectively. For pathological cases, the approach reached an accuracy of 0.9435 and 0.9439, respectively. The time complexity approaches (O(n)), which is significantly lower than the state-of-the-art method. Graphical Abstract (GA)-Overview of the steps of the proposed algorithm Step 1: Input. Input a fundus color image. Step 2: Preprocess. The aim of process is to obtain gray image and to filter noise. Step 3: Enhancement and amendment. For improving the segmentation accuracy, a new enhancement and amendment is applied for enhancing the vessels particularly thin vessels and removing the various disturbances. Step 4: Blood vessel segmentation. Step 4.1: Binarization. To identify the blood vessel, the threshold-based method is applied to gain binary images. Step 4.2: Object decomposition. Before blood vessel recognition, we must decompose the binary image into some independent objects. Step 4.3: Calculate the flattening. Calculate the flattening of each of objects. Step 4.4: Blood vessel recognition. Blood vessels are identified by its flattening. Step 5: Output. Output a blood vessel image Graphical Abstract (GA)-Overview of the proposed approach. (a) Input Image. (b) Preprocessing. (c) Top-bottom-hat transformation. (d) Enhancement. (e) Blood vessel segmentation with different thresholds. (f) Blood vessels.
视网膜血管自动分割在分析糖尿病、视网膜病变和高血压等眼底病变方面具有重要作用。本文介绍了一种从眼底图像中自动提取血管的新无监督方法。该方法提出了一种新的血管增强方法,我们称之为修正的顶底帽变换,用于去除亮斑,进一步增强眼底图像中的血管,并提供了一种新的特征,我们称之为最小外接椭圆的扁平化,用于识别血管。该方法在两个公开可用的数据库 DRIVE 和 STARE 上进行了测试,分别达到了 0.9446 和 0.9503 的平均准确率。对于病理性病例,该方法的准确率分别达到了 0.9435 和 0.9439。时间复杂度接近(O(n)),明显低于现有的方法。
图摘要(GA)-算法步骤概述
步骤 1:输入。输入眼底彩色图像。
步骤 2:预处理。过程的目的是获得灰度图像并过滤噪声。
步骤 3:增强和修正。为了提高分割精度,应用了新的增强和修正方法,以增强血管,特别是细血管,并去除各种干扰。
步骤 4:血管分割。
步骤 4.1:二值化。为了识别血管,应用基于阈值的方法获得二值图像。
步骤 4.2:物体分解。在进行血管识别之前,我们必须将二值图像分解为一些独立的物体。
步骤 4.3:计算扁平化。计算每个物体的扁平化。
步骤 4.4:血管识别。通过其扁平化识别血管。
步骤 5:输出。输出血管图像
图摘要(GA)-提出方法概述。(a)输入图像。(b)预处理。(c)顶底帽变换。(d)增强。(e)不同阈值的血管分割。(f)血管。