Williamson Ross S, Sahani Maneesh, Pillow Jonathan W
Gatsby Computational Neuroscience Unit, University College London, London, UK; Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London, UK.
Gatsby Computational Neuroscience Unit, University College London, London, UK.
PLoS Comput Biol. 2015 Apr 1;11(4):e1004141. doi: 10.1371/journal.pcbi.1004141. eCollection 2015 Apr.
Stimulus dimensionality-reduction methods in neuroscience seek to identify a low-dimensional space of stimulus features that affect a neuron's probability of spiking. One popular method, known as maximally informative dimensions (MID), uses an information-theoretic quantity known as "single-spike information" to identify this space. Here we examine MID from a model-based perspective. We show that MID is a maximum-likelihood estimator for the parameters of a linear-nonlinear-Poisson (LNP) model, and that the empirical single-spike information corresponds to the normalized log-likelihood under a Poisson model. This equivalence implies that MID does not necessarily find maximally informative stimulus dimensions when spiking is not well described as Poisson. We provide several examples to illustrate this shortcoming, and derive a lower bound on the information lost when spiking is Bernoulli in discrete time bins. To overcome this limitation, we introduce model-based dimensionality reduction methods for neurons with non-Poisson firing statistics, and show that they can be framed equivalently in likelihood-based or information-theoretic terms. Finally, we show how to overcome practical limitations on the number of stimulus dimensions that MID can estimate by constraining the form of the non-parametric nonlinearity in an LNP model. We illustrate these methods with simulations and data from primate visual cortex.
神经科学中的刺激维度约简方法旨在识别影响神经元放电概率的低维刺激特征空间。一种流行的方法,称为最大信息维度(MID),使用一种称为“单峰信息”的信息理论量来识别这个空间。在这里,我们从基于模型的角度研究MID。我们表明,MID是线性-非线性-泊松(LNP)模型参数的最大似然估计器,并且经验单峰信息对应于泊松模型下的归一化对数似然。这种等价性意味着,当放电不能很好地用泊松模型描述时,MID不一定能找到最大信息刺激维度。我们提供了几个例子来说明这个缺点,并推导了在离散时间间隔内放电为伯努利分布时信息损失的下限。为了克服这个限制,我们为具有非泊松放电统计的神经元引入了基于模型的维度约简方法,并表明它们可以用基于似然或信息理论的术语等效地构建。最后,我们展示了如何通过约束LNP模型中非参数非线性的形式来克服MID可以估计的刺激维度数量的实际限制。我们用来自灵长类动物视觉皮层的模拟和数据说明了这些方法。