Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
Curr Opin Neurobiol. 2020 Dec;65:194-202. doi: 10.1016/j.conb.2020.11.005. Epub 2020 Dec 14.
Neural computations underlying cognition and behavior rely on the coordination of neural activity across multiple brain areas. Understanding how brain areas interact to process information or generate behavior is thus a central question in neuroscience. Here we provide an overview of statistical approaches for characterizing statistical dependencies in multi-region spike train recordings. We focus on two classes of models in particular: regression-based models and shared latent variable models. Regression-based models describe interactions in terms of a directed transformation of information from one region to another. Shared latent variable models, on the other hand, seek to describe interactions in terms of sources that capture common fluctuations in spiking activity across regions. We discuss the advantages and limitations of each of these approaches and future directions for the field. We intend this review to be an introduction to the statistical methods in multi-region models for computational neuroscientists and experimentalists alike.
认知和行为背后的神经计算依赖于多个脑区之间的神经活动协调。因此,了解大脑区域如何相互作用以处理信息或产生行为是神经科学中的一个核心问题。在这里,我们提供了一种用于描述多区域尖峰列车记录中统计相关性的统计方法概述。我们特别关注两类模型:基于回归的模型和共享潜在变量模型。基于回归的模型根据从一个区域到另一个区域的信息的有向转换来描述相互作用。另一方面,共享潜在变量模型试图根据源来描述相互作用,这些源捕获了跨区域尖峰活动的共同波动。我们讨论了这些方法各自的优点和局限性,以及该领域的未来发展方向。我们希望本综述能为计算神经科学家和实验人员提供多区域模型中统计方法的介绍。