Morales A J, Borondo J, Losada J C, Benito R M
Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, ETSI Agrónomos, 28040 Madrid, Spain.
Chaos. 2015 Mar;25(3):033114. doi: 10.1063/1.4913758.
We say that a population is perfectly polarized when divided in two groups of the same size and opposite opinions. In this paper, we propose a methodology to study and measure the emergence of polarization from social interactions. We begin by proposing a model to estimate opinions in which a minority of influential individuals propagate their opinions through a social network. The result of the model is an opinion probability density function. Next, we propose an index to quantify the extent to which the resulting distribution is polarized. Finally, we apply the proposed methodology to a Twitter conversation about the late Venezuelan president, Hugo Chávez, finding a good agreement between our results and offline data. Hence, we show that our methodology can detect different degrees of polarization, depending on the structure of the network.
当一个群体被分成两个规模相同但意见相反的群体时,我们称该群体处于完全两极分化状态。在本文中,我们提出了一种方法来研究和衡量社会互动中两极分化的出现。我们首先提出一个估计意见的模型,其中少数有影响力的个体通过社交网络传播他们的意见。该模型的结果是一个意见概率密度函数。接下来,我们提出一个指标来量化所得分布的两极分化程度。最后,我们将所提出的方法应用于关于已故委内瑞拉总统乌戈·查韦斯的推特对话中,发现我们的结果与线下数据之间有很好的一致性。因此,我们表明,根据网络结构,我们的方法可以检测到不同程度的两极分化。