Suppr超能文献

从多个时间序列中检测噪声耦合系统中的分岔

Detection of bifurcations in noisy coupled systems from multiple time series.

作者信息

Williamson Mark S, Lenton Timothy M

机构信息

Earth System Science Group, College of Life and Environmental Sciences, University of Exeter, Laver Building, North Park Road, Exeter EX4 4QE, United Kingdom.

出版信息

Chaos. 2015 Mar;25(3):036407. doi: 10.1063/1.4908603.

Abstract

We generalize a method of detecting an approaching bifurcation in a time series of a noisy system from the special case of one dynamical variable to multiple dynamical variables. For a system described by a stochastic differential equation consisting of an autonomous deterministic part with one dynamical variable and an additive white noise term, small perturbations away from the system's fixed point will decay slower the closer the system is to a bifurcation. This phenomenon is known as critical slowing down and all such systems exhibit this decay-type behaviour. However, when the deterministic part has multiple coupled dynamical variables, the possible dynamics can be much richer, exhibiting oscillatory and chaotic behaviour. In our generalization to the multi-variable case, we find additional indicators to decay rate, such as frequency of oscillation. In the case of approaching a homoclinic bifurcation, there is no change in decay rate but there is a decrease in frequency of oscillations. The expanded method therefore adds extra tools to help detect and classify approaching bifurcations given multiple time series, where the underlying dynamics are not fully known. Our generalisation also allows bifurcation detection to be applied spatially if one treats each spatial location as a new dynamical variable. One may then determine the unstable spatial mode(s). This is also something that has not been possible with the single variable method. The method is applicable to any set of time series regardless of its origin, but may be particularly useful when anticipating abrupt changes in the multi-dimensional climate system.

摘要

我们将一种在有噪声系统的时间序列中检测临近分岔的方法从单个动力学变量的特殊情况推广到多个动力学变量的情况。对于一个由包含一个动力学变量的自治确定性部分和一个加性白噪声项组成的随机微分方程所描述的系统,远离系统不动点的小扰动在系统越接近分岔时衰减得越慢。这种现象被称为临界慢化,并且所有这类系统都表现出这种衰减型行为。然而,当确定性部分有多个耦合的动力学变量时,可能的动力学可以更加丰富,表现出振荡和混沌行为。在我们对多变量情况的推广中,我们发现了衰减率的额外指标,比如振荡频率。在接近同宿分岔的情况下,衰减率没有变化,但振荡频率会降低。因此,这种扩展方法增加了额外的工具,有助于在给定多个时间序列且其潜在动力学不完全清楚的情况下检测和分类临近的分岔。如果将每个空间位置视为一个新的动力学变量,我们的推广还允许在空间上应用分岔检测。然后可以确定不稳定的空间模式。这也是单变量方法无法做到的。该方法适用于任何一组时间序列,无论其来源如何,但在预测多维气候系统的突然变化时可能特别有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验