Han Han, Monroe Nicole, Votteler Jörg, Shakya Binita, Sundquist Wesley I, Hill Christopher P
From the Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650.
From the Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650
J Biol Chem. 2015 May 22;290(21):13490-9. doi: 10.1074/jbc.M115.642355. Epub 2015 Apr 1.
The endosomal sorting complexes required for transport (ESCRT) pathway drives reverse topology membrane fission events within multiple cellular pathways, including cytokinesis, multivesicular body biogenesis, repair of the plasma membrane, nuclear membrane vesicle formation, and HIV budding. The AAA ATPase Vps4 is recruited to membrane necks shortly before fission, where it catalyzes disassembly of the ESCRT-III lattice. The N-terminal Vps4 microtubule-interacting and trafficking (MIT) domains initially bind the C-terminal MIT-interacting motifs (MIMs) of ESCRT-III subunits, but it is unclear how the enzyme then remodels these substrates in response to ATP hydrolysis. Here, we report quantitative binding studies that demonstrate that residues from helix 5 of the Vps2p subunit of ESCRT-III bind to the central pore of an asymmetric Vps4p hexamer in a manner that is dependent upon the presence of flexible nucleotide analogs that can mimic multiple states in the ATP hydrolysis cycle. We also find that substrate engagement is autoinhibited by the Vps4p MIT domain and that this inhibition is relieved by binding of either Type 1 or Type 2 MIM elements, which bind the Vps4p MIT domain through different interfaces. These observations support the model that Vps4 substrates are initially recruited by an MIM-MIT interaction that activates the Vps4 central pore to engage substrates and generate force, thereby triggering ESCRT-III disassembly.
转运所需的内体分选复合体(ESCRT)途径驱动多种细胞途径中的反向拓扑膜裂变事件,包括胞质分裂、多泡体生物发生、质膜修复、核膜囊泡形成和HIV出芽。AAA ATP酶Vps4在裂变前不久被招募到膜颈处,在那里它催化ESCRT-III晶格的解体。Vps4的N端微管相互作用和运输(MIT)结构域最初与ESCRT-III亚基的C端MIT相互作用基序(MIM)结合,但尚不清楚该酶随后如何响应ATP水解对这些底物进行重塑。在这里,我们报告了定量结合研究,结果表明ESCRT-III的Vps2p亚基螺旋5的残基以一种依赖于可模拟ATP水解循环中多种状态的柔性核苷酸类似物的存在的方式,与不对称Vps4p六聚体的中央孔结合。我们还发现底物结合被Vps4p MIT结构域自动抑制,并且通过1型或2型MIM元件的结合可解除这种抑制,这两种元件通过不同界面与Vps4p MIT结构域结合。这些观察结果支持这样的模型,即Vps4底物最初通过MIM-MIT相互作用被招募,该相互作用激活Vps4中央孔以结合底物并产生力,从而触发ESCRT-III的解体。