Suppr超能文献

使用核图割和连续最大流的视网膜层分割

Retina layer segmentation using kernel graph cuts and continuous max-flow.

作者信息

Kaba D, Wang Y, Wang C, Liu X, Zhu H, Salazar-Gonzalez A G, Li Y

出版信息

Opt Express. 2015 Mar 23;23(6):7366-84. doi: 10.1364/OE.23.007366.

Abstract

Circular scan Spectral-Domain Optic Coherence Tomography imaging (SD-OCT) is one of the best tools for diagnosis of retinal diseases. This technique provides more comprehensive detail of the retinal morphology and layers around the optic disc nerve head (ONH). Since manual labelling of the retinal layers can be tedious and time consuming, accurate and robust automated segmentation methods are needed to provide the thickness evaluation of these layers in retinal disorder assessments such as glaucoma. The proposed method serves this purpose by performing the segmentation of retinal layers boundaries in circular SD-OCT scans acquired around the ONH. The layers are detected by adapting a graph cut segmentation technique that includes a kernel-induced space and a continuous multiplier based max-flow algorithm. Results from scan images acquired with Spectralis (Heidelberg Engineering, Germany) prove that the proposed method is robust and efficient in detecting the retinal layers boundaries in images. With a mean root-mean-square error (RMSE) of 0.0835 ± 0.0495 and an average Dice coefficient of 0.9468 ± 0.0705 pixels for the retinal nerve fibre layer thickness, the proposed method demonstrated effective agreement with manual annotations.

摘要

环形扫描光谱域光学相干断层扫描成像(SD - OCT)是诊断视网膜疾病的最佳工具之一。该技术能提供视网膜形态以及视盘神经头(ONH)周围各层更全面的细节。由于手动标记视网膜各层既繁琐又耗时,因此在青光眼等视网膜疾病评估中,需要准确且稳健的自动分割方法来评估这些层的厚度。所提出的方法通过对围绕ONH获取的环形SD - OCT扫描图像中的视网膜层边界进行分割来实现这一目的。通过采用一种图割分割技术来检测这些层,该技术包括一个核诱导空间和基于连续乘法器的最大流算法。使用德国海德堡工程公司的Spectralis获取的扫描图像结果证明,所提出的方法在检测图像中的视网膜层边界方面既稳健又高效。对于视网膜神经纤维层厚度,该方法的平均均方根误差(RMSE)为0.0835±0.0495,平均骰子系数为0.9468±0.0705像素,与手动标注显示出有效的一致性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验