Suppr超能文献

利用黄斑平面空间校正 SD-OCT 数据的强度非均匀性。

Intensity inhomogeneity correction of SD-OCT data using macular flatspace.

机构信息

Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.

Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA.

出版信息

Med Image Anal. 2018 Jan;43:85-97. doi: 10.1016/j.media.2017.09.008. Epub 2017 Oct 12.

Abstract

Images of the retina acquired using optical coherence tomography (OCT) often suffer from intensity inhomogeneity problems that degrade both the quality of the images and the performance of automated algorithms utilized to measure structural changes. This intensity variation has many causes, including off-axis acquisition, signal attenuation, multi-frame averaging, and vignetting, making it difficult to correct the data in a fundamental way. This paper presents a method for inhomogeneity correction by acting to reduce the variability of intensities within each layer. In particular, the N3 algorithm, which is popular in neuroimage analysis, is adapted to work for OCT data. N3 works by sharpening the intensity histogram, which reduces the variation of intensities within different classes. To apply it here, the data are first converted to a standardized space called macular flat space (MFS). MFS allows the intensities within each layer to be more easily normalized by removing the natural curvature of the retina. N3 is then run on the MFS data using a modified smoothing model, which improves the efficiency of the original algorithm. We show that our method more accurately corrects gain fields on synthetic OCT data when compared to running N3 on non-flattened data. It also reduces the overall variability of the intensities within each layer, without sacrificing contrast between layers, and improves the performance of registration between OCT images.

摘要

利用光相干断层扫描(OCT)获取的视网膜图像通常存在强度不均匀问题,这会降低图像质量和用于测量结构变化的自动算法的性能。这种强度变化有许多原因,包括离轴采集、信号衰减、多帧平均和渐晕,因此很难从根本上纠正数据。本文提出了一种通过减少每层内强度变化来进行不均匀性校正的方法。特别是在神经影像学中很流行的 N3 算法被改编为适用于 OCT 数据。N3 通过锐化强度直方图来工作,这减少了不同类别的强度变化。为了在这里应用它,首先将数据转换为称为黄斑平面空间(MFS)的标准化空间。MFS 通过去除视网膜的自然曲率,使每层内的强度更容易归一化。然后,使用改进的平滑模型在 MFS 数据上运行 N3,这提高了原始算法的效率。与在未展开数据上运行 N3 相比,我们的方法在合成 OCT 数据上更准确地校正增益场。它还降低了每层内强度的整体变化,而不会牺牲层之间的对比度,并提高了 OCT 图像之间的配准性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db6d/6311386/7b8e09294c6a/nihms-915170-f0001.jpg

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验