Suppr超能文献

使用单电极方法通过脑电图记录的高级分析进行精神分裂症检测和分类。

Schizophrenia detection and classification by advanced analysis of EEG recordings using a single electrode approach.

作者信息

Dvey-Aharon Zack, Fogelson Noa, Peled Avi, Intrator Nathan

机构信息

Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel.

The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel; Department of Psychology, University of A Coruña, La Coruña, Spain.

出版信息

PLoS One. 2015 Apr 2;10(4):e0123033. doi: 10.1371/journal.pone.0123033. eCollection 2015.

Abstract

Electroencephalographic (EEG) analysis has emerged as a powerful tool for brain state interpretation and diagnosis, but not for the diagnosis of mental disorders; this may be explained by its low spatial resolution or depth sensitivity. This paper concerns the diagnosis of schizophrenia using EEG, which currently suffers from several cardinal problems: it heavily depends on assumptions, conditions and prior knowledge regarding the patient. Additionally, the diagnostic experiments take hours, and the accuracy of the analysis is low or unreliable. This article presents the "TFFO" (Time-Frequency transformation followed by Feature-Optimization), a novel approach for schizophrenia detection showing great success in classification accuracy with no false positives. The methodology is designed for single electrode recording, and it attempts to make the data acquisition process feasible and quick for most patients.

摘要

脑电图(EEG)分析已成为解释大脑状态和进行诊断的有力工具,但并非用于精神障碍的诊断;这可能是由于其空间分辨率低或深度敏感性不足所致。本文关注的是利用脑电图诊断精神分裂症,目前这一方法存在几个主要问题:它严重依赖于关于患者的假设、条件和先验知识。此外,诊断实验耗时数小时,且分析的准确性较低或不可靠。本文提出了“TFFO”(时频变换后进行特征优化),这是一种用于精神分裂症检测的新方法,在分类准确性方面取得了巨大成功,且无假阳性。该方法专为单电极记录设计,旨在使大多数患者的数据采集过程可行且快速。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfa8/4383331/ecc7ca63a95d/pone.0123033.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验